Advertisement

sp2/sp3 bonding ratio dependence of the band-gap in graphene oxide

  • Ebrahim AkbariEmail author
  • Iman Akbari
  • Mohammad Reza Ebrahimi
Regular Article
  • 37 Downloads

Abstract

Although the band-gap in pure graphene is zero, the oxygenated graphene could have a considerable band-gap. The D/G peak intensity ratio is known as a measure of the size of sp3sp2 domains in graphene oxide (GO) sheets and determines the band-gap in GO sheets. Characterization results showed that the photoluminescence (PL) spectra of GO suspensions has a peak at ~604 nm and also the I(D)/I(G) intensity ratio of GO suspensions is 1.73. After reduction, a redshift appeared at PL spectrum (at 650 nm) and the I(D)/I(G) intensity ratio decrease to 1.26. Our results showed that the band-gap in GO is related to the I(D)/I(G) intensity ratio of GO suspensions and offers a mechanism for measuring the band gap according to Raman spectra. Moreover, GO is fluorescent over a broad range of wavelengths and can be used in the biological application.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    C. Lee, X. Wei, J.W. Kysar et al., Science 321, 385 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    O. Akhavan, E. Ghaderi, A. Akhavan, Biomaterials 33, 8017 (2012) CrossRefGoogle Scholar
  4. 4.
    H. Nagai, M. Nakano, K. Yoneda et al., Chem. Phys. Lett. 477, 355 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    A. Missaoui, J.J. Khabthani, N.E. Jaidane, D. Mayou, G.T. de Laissardière, Eur. Phys. J. B 90, 75 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    A. Mathkar, D. Tozier, P. Cox et al., J. Phys. Chem. Lett. 3, 986 (2012) CrossRefGoogle Scholar
  7. 7.
    H.Y. Mao, Y.H. Lu, J.D. Lin et al., Prog. Surf. Sci. 88, 132 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    Z. Sun, D.K. James, J.M. Tour, J. Phys. Chem. Lett. 2, 2425 (2011) CrossRefGoogle Scholar
  9. 9.
    J. Lee, G. Kim, Carbon 122, 281 (2017) CrossRefGoogle Scholar
  10. 10.
    Z. Wang, S. Qin, C. Wang, Eur. Phys. J. B 87, 88 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    Q.L. Meng, H. Liu, Z. Huang et al., Chin. Chem. Lett. 29, 711 (2018) CrossRefGoogle Scholar
  12. 12.
    I.Y. Sagalianov, T.M. Radchenko, Y.I. Prylutskyy et al., Eur. Phys. J. B 90, 112 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    K.P. Loh, Q. Bao, G. Eda et al., Nat. Chem. 2, 1015 (2010) CrossRefGoogle Scholar
  14. 14.
    E. Morales-Narváez, A. Merkoçi, Adv. Mater. 24, 3298 (2012) CrossRefGoogle Scholar
  15. 15.
    M.T. Hasan, B.J. Senger, P. Mulford et al., Nanotechnology 28, 065705 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    A. Lerf, H. He, M. Forster et al., J. Phys. Chem. B 102, 4477 (1998) CrossRefGoogle Scholar
  17. 17.
    D.R. Dreyer, S. Park, C.W. Bielawski et al., Chem. Soc. Rev. 39, 228 (2010) CrossRefGoogle Scholar
  18. 18.
    Z. Luo, P.M. Vora, E.J. Mele et al., Appl. Phys. Lett. 94, 111909 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    S. Wang, Y. Dong, C. He et al., RSC Adv. 7, 53643 (2017) CrossRefGoogle Scholar
  20. 20.
    M.Y. Han, B. Özyilmaz, Y. Zhang et al., Phys. Rev. Lett. 98, 206805 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    W. Oswald, Z. Wu, Phys. Rev. B 85, 115431 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    R. Ye, Z. Peng, A. Metzger et al., ACS Appl. Mater. Interfaces 7, 7041 (2015) CrossRefGoogle Scholar
  23. 23.
    D. Wei, Y. Liu, Y. Wang et al., Nano Lett. 9, 1752 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    C.H. Lui, Z. Li, K.F. Mak et al., Nat. Phys. 7, 944 (2011) CrossRefGoogle Scholar
  25. 25.
    E.V. Castro, K.S. Novoselov, S.V. Morozov et al., Phys. Rev. Lett. 99, 216802 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    M. Rastgoo, S.M. Tabatabaei, M. Fathipour, Eur. Phys. J. B 91, 121 (2018) ADSCrossRefGoogle Scholar
  28. 28.
    W.G. Ma, S.Q. Lu, D.B. Zhu et al., Chin. Chem. Lett. 25, 482 (2014) CrossRefGoogle Scholar
  29. 29.
    A. Paul, A. Hasan, H.A. Kindi, A.K. Gaharwar et al., ACS Nano 8, 8050 (2014) CrossRefGoogle Scholar
  30. 30.
    R. Tandel, N. Teradal, A. Satpati et al., Chin. Chem. Lett. 28, 1429 (2017) CrossRefGoogle Scholar
  31. 31.
    O. Akhavan, E. Ghaderi, R. Rahighi, ACS Nano 6, 2904 (2012) CrossRefGoogle Scholar
  32. 32.
    K. Jin, H. Gao, L. Lai et al., J. Lumin. 197, 147 (2018) CrossRefGoogle Scholar
  33. 33.
    O. Akhavan, E. Ghaderi, ACS Nano 4, 5731 (2010) CrossRefGoogle Scholar
  34. 34.
    O. Akhavan, E. Ghaderi, M. Shahsavar, Carbon 59, 200 (2013) CrossRefGoogle Scholar
  35. 35.
    O. Akhavan, M. Kalaee, Z.S. Alavi et al., Carbon 50, 3015 (2012) CrossRefGoogle Scholar
  36. 36.
    H.C. Schniepp, J.L. Li, M.J. McAllister et al., J. Phys. Chem. B 110, 8535 (2006) CrossRefGoogle Scholar
  37. 37.
    M.J. McAllister, J.L. Li, D.H. Adamson et al., Chem. Mater. 19, 4396 (2007) CrossRefGoogle Scholar
  38. 38.
    A.C. Ferrari, M.B. Denis, Nat. Nanotechnol. 8, 235 (2013) ADSCrossRefGoogle Scholar
  39. 39.
    K.N. Kudin, B. Ozbas, H.C. Schniepp et al., Nano Lett. 8, 36 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ebrahim Akbari
    • 1
    Email author
  • Iman Akbari
    • 2
  • Mohammad Reza Ebrahimi
    • 1
  1. 1.Department of PhysicsSharif University of TechnologyTehranIran
  2. 2.Department of PhysicsYasuj UniversityYasujIran

Personalised recommendations