Advertisement

Manipulating the anisotropy of the Dirac-Cone in graphene by laser fields

  • Shahd AlfadhliEmail author
  • Fedor V. KusmartsevEmail author
  • Sergey E. Savel’evEmail author
Open Access
Regular Article
  • 60 Downloads

Abstract

One of the most striking properties of graphene is the relativistic-like Dirac-Cone spectrum of charge carriers. By applying high-frequency laser fields, the system can be described with the use of similar spectrum which is based on a concept of electron quasi-energy. There in this spectrum a creation and annihilation of new Dirac points and cones as well as opening a gap may arise. This allows controlling electron motion without applying DC periodic fields which are effectively described by graphene superlattices. Here we demonstrate that coherent electromagnetic fields applied to graphene can generate new Dirac and Weyl points, induce Lifshitz quantum phase transition for slightly doped graphene and produce an anisotropy of the Dirac cones, which can be even infinite.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    K.S. Novoselov et al., Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    A. O’Hare, F.V. Kusmartsev, K.I. Kugel, Nano Lett. 12, 1045 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    F.V. Kusmartsev, A.M. Tsvelik, JETP Lett. 42, 257 (1985) ADSGoogle Scholar
  6. 6.
    S.E. Savel’ev, A.S. Alexandrov, Phys. Rev. B 84, 035428 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    P. Rodriguez-Lopez, J.J. Betouras, S.E. Savel’ev, Phys. Rev. B 89, 155132 (2014) ADSCrossRefGoogle Scholar
  8. 8.
    R.D.Y. Hills, A. Kusmartseva, F.V. Kusmartsev, Phys. Rev. B 95, 214103 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    Y.P. Bliokh, V. Freilikher, S. Savel’ev, F. Nori, Phys. Rev. B 79, 075123 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    T.G. Pedersen, C. Flindt, J. Pedersen, N.A. Mortensen, A.P. Jauho, K. Pedersen, Phys. Rev. Lett. 100, 136804 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    J.C.W. Song, A.V. Shytov, L.S. Levitov, Phys. Rev. Lett. 111, 266801 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    K.N. Alekseev, E.H. Cannon, J.C. McKinney, F.V. Kusmartsev, D.K. Campbell, Physica D 113, 129 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    H.T. Grahn, Semiconductor superlattices: growth and electronic properties (World Scientific, 1995) Google Scholar
  14. 14.
    J. Cayssol, C. R. Phys. 14, 760 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    M. Engel et al., Nat. Commun. 3, 906 (2012) CrossRefGoogle Scholar
  16. 16.
    Y. Fan, F. Zhang, Q. Zhao, Z. Wei, H. Li, Opt. Lett. 39, 6269 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Rao, J.J. Heitz, T. Roger, N. Westerberg, D. Faccio, Opt. Lett. 39, 5345 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    X. Gan, R.J. Shiue, Y. Gao, S. Assefa, J. Hone, D. Englund, IEEE J. Sel. Top. Quant. Electr. 20, 95 (2014) ADSCrossRefGoogle Scholar
  19. 19.
    T. Wenger, G. Viola, J. Kinaret, M. Fogelström, P. Tassin, 2D Mater. 4, 025103 (2017) CrossRefGoogle Scholar
  20. 20.
    S.E. Savel’ev, W. Häusler, P. Hänggi, Phys. Rev. Lett. 109, 226602 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    S.A. Alfadhli, S.E. Savel’ev, F.V. Kusmartsev, J. Phys.: Conf. Ser. 961, 012012 (2018) Google Scholar
  22. 22.
    B. Dietz et al., Phys. Rev. B 88, 104101 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    A.B.G. Trabelsi, F.V. Kusmartsev, M.B. Gaifullin, D.M. Forrester, A. Kusmartseva, Nanoscale 9, 11463 (2017) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Microsystems and Terahertz Research CenterChengdu, SichuanP.R. China
  2. 2.Department of PhysicsLoughborough UniversityLoughboroughUK
  3. 3.Department of PhysicsUniversity of TabukTabukSaudi Arabia
  4. 4.ITMO UniversitySt. PetersburgRussia

Personalised recommendations