Advertisement

Large-deviation properties of the largest biconnected component for random graphs

  • Hendrik SchaweEmail author
  • Alexander K. Hartmann
Regular Article
  • 26 Downloads

Abstract

We study the size of the largest biconnected components in sparse Erdős–Rényi graphs with finite connectivity and Barabási–Albert graphs with non-integer mean degree. Using a statistical-mechanics inspired Monte Carlo approach we obtain numerically the distributions for different sets of parameters over almost their whole support, especially down to the rare-event tails with probabilities far less than 10−100. This enables us to observe a qualitative difference in the behavior of the size of the largest biconnected component and the largest 2-core in the region of very small components, which is unreachable using simple sampling methods. Also, we observe a convergence to a rate function even for small sizes, which is a hint that the large deviation principle holds for these distributions.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, Oxford, 2006) Google Scholar
  3. 3.
    M. Newman, A.L. Barabási, D. Watts, The Structure and Dynamics of Networks (Princeton University Press, 2006) Google Scholar
  4. 4.
    M. Newman, Networks: an Introduction (Oxford University Press, Princeton, 2010) Google Scholar
  5. 5.
    A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2012) Google Scholar
  6. 6.
    M.L. Sachtjen, B.A. Carreras, V.E. Lynch, Phys. Rev. E 61, 4877 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    T. Dewenter, A.K. Hartmann, New J. Phys. 17, 015005 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    R. Cohen, K. Erez, D. ben Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    D.S. Lee, H. Rieger, EPL (Europhys. Lett.) 73, 471 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    C.M. Ghim, K.I. Goh, B. Kahng, J. Theor. Biol. 237, 401 (2005) CrossRefGoogle Scholar
  12. 12.
    P. Kim, D.S. Lee, B. Kahng, Sci. Rep. 5, 15567 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    P. Erdős, A. Rényi, Publ. Math. Inst. Hungar. Acad. Sci. 5, 17 (1960) Google Scholar
  14. 14.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    A.L. Barabási, R. Albert, Science 286, 509 (1999) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Albert, H. Jeong, A.L. Barabási, Nature 406, 378 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    M.E.J. Newman, G. Ghoshal, Phys. Rev. Lett. 100, 138701 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    C. Norrenbrock, O. Melchert, A.K. Hartmann, Phys. Rev. E 94, 062125 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    G. Bianconi, Phys. Rev. E 97, 022314 (2018) ADSCrossRefGoogle Scholar
  21. 21.
    G. Bianconi, Phys. Rev. E 96, 012302 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    P. Kim, D.S. Lee, B. Kahng, Phys. Rev. E 87, 022804 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    M. Biskup, L. Chayes, S.A. Smith, Random Struct. Algor. 31, 354 (2007) CrossRefGoogle Scholar
  24. 24.
    A.K. Hartmann, Eur. Phys. J. B 84, 627 (2011) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A.K. Hartmann, Eur. Phys. J. Special Topics 226, 567 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    A.K. Hartmann, Big Practical Guide to Computer Simulations (World Scientific, Singapore, 2015) Google Scholar
  27. 27.
    F. den Hollander Large Deviations (American Mathematical Society, Providence, 2000) Google Scholar
  28. 28.
    H. Touchette, Phys. Rep. 478, 1 (2009) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Hopcroft, R. Tarjan, Commun. ACM 16, 372 (1973) CrossRefGoogle Scholar
  30. 30.
    T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms (MIT Press, MA, 2009) Google Scholar
  31. 31.
    B. Dezső, A. Jüttner, P. Kovács, Electron. Notes Theor. Comput. Sci. 264, 23 (2011) (Proceedings of the Second Workshop on Generative Technologies (WGT) 2010) CrossRefGoogle Scholar
  32. 32.
    G. Ghoshal, Ph.D. thesis, University of Michigan, 2009 Google Scholar
  33. 33.
    M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    H. Klein-Hennig, A.K. Hartmann, Phys. Rev. E 85, 026101 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    A.K. Hartmann, Phys. Rev. E 65, 056102 (2002) ADSCrossRefGoogle Scholar
  36. 36.
    S. Wolfsheimer, B. Burghardt, A.K. Hartmann, Algorithm. Mol. Biol. 2, 9 (2007) CrossRefGoogle Scholar
  37. 37.
    P. Fieth, A.K. Hartmann, Phys. Rev. E 94, 022127 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    G. Claussen, A.K. Hartmann, S.N. Majumdar, Phys. Rev. E 91, 052104 (2015) ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    T. Dewenter, G. Claussen, A.K. Hartmann, S.N. Majumdar, Phys. Rev. E 94, 052120 (2016) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    H. Schawe, A.K. Hartmann, S.N. Majumdar, Phys. Rev. E 97, 062159 (2018) ADSCrossRefGoogle Scholar
  41. 41.
    H. Schawe, A.K. Hartmann, https://doi.org/arXiv:1808.10698 (2018)
  42. 42.
    A.K. Hartmann, Phys. Rev. E 89, 052103 (2014) ADSCrossRefGoogle Scholar
  43. 43.
    A. Engel, R. Monasson, A.K. Hartmann, J. Stat. Phys. 117, 387 (2004) ADSCrossRefGoogle Scholar
  44. 44.
    A.K. Hartmann, M. Mézard, Phys. Rev. E 97, 032128 (2018) ADSCrossRefGoogle Scholar
  45. 45.
    F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001) ADSCrossRefGoogle Scholar
  46. 46.
    F. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001) ADSCrossRefGoogle Scholar
  47. 47.
    B.J. Schulz, K. Binder, M. Müller, D.P. Landau, Phys. Rev. E 67, 067102 (2003) ADSCrossRefGoogle Scholar
  48. 48.
    R.E. Belardinelli, V.D. Pereyra, Phys. Rev. E 75, 046701 (2007) ADSCrossRefGoogle Scholar
  49. 49.
    R.E. Belardinelli, V.D. Pereyra, J. Chem. Phys. 127, 184105 (2007) ADSCrossRefGoogle Scholar
  50. 50.
    J. Lee, Phys. Rev. Lett. 71, 211 (1993) ADSCrossRefGoogle Scholar
  51. 51.
    R. Dickman, A.G. Cunha-Netto, Phys. Rev. E 84, 026701 (2011) ADSCrossRefGoogle Scholar
  52. 52.
    B. Efron, Ann. Stat. 7, 1 (1979) CrossRefGoogle Scholar
  53. 53.
    A.P. Young, Everything You Wanted to Know About Data Analysis and Fitting but Were Afraid to Ask, SpringerBriefs in Physics (Springer International Publishing, Switzerland, 2015) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Physik, Universität OldenburgOldenburgGermany

Personalised recommendations