Advertisement

First-principles study of structural stability, electronic properties and lattice thermal conductivity of KAgX (X = S, Se, Te)

  • Mahmoud M. A. MahmoudEmail author
  • Elkana K. Rugut
  • Mahlaga P. Molepo
  • Daniel P. Joubert
Regular Article
  • 95 Downloads

Abstract

The present study is the first attempt towards establishing computational insights into the structural, electronic, mechanical, dynamical and thermal properties of the tetragonal phases of potassium chalcoargentates (KAgX). We find that the lattice thermal conductivity of KAgX is anisotropic, with values of 0.553 (0.279), 0.509 (0.369) and 0.221 (0.125) Wm−1K−1 at room temperature (300 K) along the a-axis (c-axis) for KAgS, KAgSe and KAgTe, respectively. The calculated values of the lattice thermal conductivity are very small, especially along the c-axis. This highlights the potential of using KAgX in designing thermoelectric materials, since low lattice thermal conductivity is a requisite for maximizing the dimensionless figure of merit which defines the efficiency of a system in converting thermal to electrical energy and vice versa.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    I. Chung, M.G. Kanatzidis, Chem. Mater. 26, 849 (2013) CrossRefGoogle Scholar
  2. 2.
    I. Chung et al., J. Am. Chem. Soc. 129, 14996 (2007) CrossRefGoogle Scholar
  3. 3.
    O. Palchik et al., Inorg. Chem. 44, 4151 (2005) CrossRefGoogle Scholar
  4. 4.
    G. Savelsberg, H. Schäfer, J. Less-Common Met. 80, 59 (1981) CrossRefGoogle Scholar
  5. 5.
    J. Liao et al., J. Am. Chem. Soc. 125, 9484 (2003) CrossRefGoogle Scholar
  6. 6.
    B. Davaasuren, E. Dashjav, A. Rothenberger, Z. Anorg. Allg. Chem. 640, 2939 (2014) CrossRefGoogle Scholar
  7. 7.
    K.-W. Kim, H. Kim, Z. Kristallogr. NCS 223, 719 (2018) Google Scholar
  8. 8.
    M.J.D. Vermeer et al., J. Am. Chem. Soc. 137, 11383 (2015) CrossRefGoogle Scholar
  9. 9.
    L.D. Zhao et al., Nature 508, 373 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    K. Feng et al., Dalton Trans. 42, 13635 (2013) CrossRefGoogle Scholar
  11. 11.
    C. Chiritescu et al., Science 315, 351 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    A. Jain et al., APL Mater. 1, 011002 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    Q. Wang et al., Appl. Mater. Interfaces 48, 41670 (2018) CrossRefGoogle Scholar
  14. 14.
    H. Ma et al., J. Alloys Compd. 739, 35 (2018) CrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    J. Carrete et al., Phys. Rev. X 4, 011019 (2014) Google Scholar
  17. 17.
    D.T. Morelli, J.P. Heremans, G.A. Slack, Phys. Rev. B 66, 195304 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    M. Palmer et al., Phys. Rev. B 56, 9431 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    Y. Zhang et al., Phys. Rev. B 85, 054306 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    S. Curtarolo et al., Comput. Mater. Sci. 58, 227 (2012) CrossRefGoogle Scholar
  21. 21.
    H. Kohn, Teach. Coll. Rec. 65, 706 (1964) Google Scholar
  22. 22.
    C. Fiolhais, F. Nogueira, A.M Marques, in A Primer in Density Functional Theory (Springer Science & Business Media, Springer-Verlag, Berlin, 2003), p. 620 Google Scholar
  23. 23.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  24. 24.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    J.P. Perdew et al., Phys. Rev. Lett. 100, 136406 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994) ADSCrossRefGoogle Scholar
  27. 27.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015) CrossRefGoogle Scholar
  29. 29.
    A. Togo, L. Chaput, I. Tanaka, Phys. Rev. B 91, 094306 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944) ADSCrossRefGoogle Scholar
  31. 31.
    R. Hill, J. Mech. Phys. Solids 11, 357 (1963) ADSCrossRefGoogle Scholar
  32. 32.
    F. Mouhat, F.-X. Coudert, Phys. Rev. B 90, 224104 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    F. Drymiotis et al., Phys. Rev. Lett. 93, 025502 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    L. Anderson, J. Phys. Chem. Solids 24, 909 (1963) ADSCrossRefGoogle Scholar
  36. 36.
    A. Kushwaha et al., Indian J. Pure Appl. Phys. (IJPAP) 53, 585 (2015) Google Scholar
  37. 37.
    S.J. Kang et al., J. Alloys Compd. 583, 295 (2014) CrossRefGoogle Scholar
  38. 38.
    K. Efthimios, Atomic and Electronic Structure of Solids (Cambridge University Press, England, 2003) Google Scholar
  39. 39.
    C.J. Cramer, F.M. Bickelhaupt, Angew. Chem. Int. Ed. 42, 381 (2003) Google Scholar
  40. 40.
    D.J. Singh, Phy. Rev. B 82, 205102 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    C. Kittel, in Introduction to Solid State Physics (Wiley, New York, 1996), p. 8 Google Scholar
  42. 42.
    M. Mahmoud, D. Joubert, Mater. Today Proc. 5, 10424 (2018) CrossRefGoogle Scholar
  43. 43.
    W. Li, N. Mingo, Phys. Rev. B 91, 144303 (2015) ADSCrossRefGoogle Scholar
  44. 44.
    P.F. Qiu et al., J. Appl. Phys. 109, 063713 (2011) ADSCrossRefGoogle Scholar
  45. 45.
    N.L. Vocadlo, G.D. Price, Phys. Earth Planet. Inter. 82, 261 (1994) ADSCrossRefGoogle Scholar
  46. 46.
    M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979) Google Scholar
  47. 47.
    G.A. Slack, J. Phys. Chem. Solids 34, 321 (1973) ADSCrossRefGoogle Scholar
  48. 48.
    J. Tiantian, C. Gang, Z. Yongsheng, Phys. Rev. B 95, 155206 (2017) CrossRefGoogle Scholar
  49. 49.
    G.P. Srivastava, The Physics of Phonons (CRC Press, New York, 1990) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mahmoud M. A. Mahmoud
    • 1
    • 2
    Email author
  • Elkana K. Rugut
    • 1
  • Mahlaga P. Molepo
    • 1
  • Daniel P. Joubert
    • 1
  1. 1.The National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of PhysicsSinnar UniversitySinnarSudan

Personalised recommendations