Advertisement

Electrostatic chameleons: theory of intelligent metashells with adaptive response to inside objects

  • Liujun Xu
  • Jiping HuangEmail author
Regular Article

Abstract

The remarkable capability to tailor material property has largely expanded the permittivity range, even with negative value. However, permittivity, as an inherent property, may lack adaptive response to nearby objects. To solve this problem, here we introduce the chameleon behavior from biology to electrostatics. The essence of electrostatic chameleons can be concluded as intelligent metashells with adaptive response to inside objects. The requirement of electrostatic chameleons is deduced by making the effective permittivities of metashells only dependent on the permittivities of inside objects. By delicately designing the anisotropic permittivities of metashells, we summarize two types of electrostatic chameleons with distinct mechanisms. The theoretical analyses are validated by numerical simulations, which indicate that the proposed metashells do work as expected. Such schemes have potential applications in camouflage, self-adaption, etc. This work not only lays the theoretical foundation for electrostatic chameleons, but also provides guidance for exploring other intelligent materials beyond chameleon.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996) CrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Micro. Theory 47, 2075 (1999) CrossRefGoogle Scholar
  3. 3.
    D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000) CrossRefGoogle Scholar
  4. 4.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) CrossRefGoogle Scholar
  5. 5.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001) CrossRefGoogle Scholar
  6. 6.
    J. Li, L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. Lett. 90, 083901 (2003) CrossRefGoogle Scholar
  7. 7.
    J. Valentine, S. Zhang, T. Zentgraf, E.U. Avila, D.A. Genov, G. Bartal, X. Zhang, Nature 455, 376 (2008) CrossRefGoogle Scholar
  8. 8.
    L.H. Gao, Q. Cheng, J. Yang, S.J. Ma, J. Zhao, S. Liu, H.B. Chen, Q. He, W.X. Jiang, H.F. Ma, Q.Y. Wen, L.J. Liang, B.B. Jin, W.W. Liu, L. Zhou, J.Q. Yao, P.H. Wu, T.J. Cui, Light Sci. Appl. 4, e324 (2015) CrossRefGoogle Scholar
  9. 9.
    T.J. Cui, S. Liu, L.L. Li, Light Sci. Appl. 5, e16172 (2016) CrossRefGoogle Scholar
  10. 10.
    R.G. Peng, Z.Q. Xiao, Q. Zhao, F.L. Zhang, Y.G. Meng, B. Li, J. Zhou, Y.C. Fan, P. Zhang, N.H. Shen, T. Koschny, C.M. Soukoulis, Phys. Rev. X 7, 011033 (2017) Google Scholar
  11. 11.
    W.X. Jiang, C.Y. Luo, S. Ge, C.W. Qiu, T.J. Cui, Adv. Mater. 27, 4628 (2015) CrossRefGoogle Scholar
  12. 12.
    T.C. Han, Y.X. Liu, L. Liu, J. Qin, Y. Li, J.Y. Bao, D.Y. Ni, C.W. Qiu, Sci. Rep. 8, 12208 (2018) CrossRefGoogle Scholar
  13. 13.
    T.Z. Yang, X. Bai, D.L. Gao, L.Z. Wu, B.W. Li, J.T.L. Thong, C.W. Qiu, Adv. Mater. 27, 7752 (2015) CrossRefGoogle Scholar
  14. 14.
    R. Mach-Batlle, C. Navau, A. Sancheza, Appl. Phys. Lett. 112, 162406 (2018) CrossRefGoogle Scholar
  15. 15.
    N.A. Nicorovici, R.C. Mcphedran, G.W. Milton, Phys. Rev. B 49, 8479 (1994) CrossRefGoogle Scholar
  16. 16.
    O. Levy, J. Appl. Phys. 77, 1696 (1995) CrossRefGoogle Scholar
  17. 17.
    P.M. Hui, C. Xu, D. Stroud, Phys. Rev. B 69, 014203 (2004) CrossRefGoogle Scholar
  18. 18.
    J.P. Huang, K.W. Yu, Phys. Rep. 431, 87 (2006) CrossRefGoogle Scholar
  19. 19.
    D.H. Liu, C. Xu, P.M. Hui, Appl. Phys. Lett. 92, 181901 (2008) CrossRefGoogle Scholar
  20. 20.
    S.Y. Park, D. Stroud, Appl. Phys. Lett. 85, 2920 (2004) CrossRefGoogle Scholar
  21. 21.
    S.Y. Park, D. Stroud, Phys. Rev. Lett. 94, 217401 (2005) CrossRefGoogle Scholar
  22. 22.
    A. Alu, N. Engheta, Phys. Rev. E 72, 016623 (2005) CrossRefGoogle Scholar
  23. 23.
    V. Levin, M. Markova, A. Mousatov, E. Kazatchenko, E. Pervago, Eur. Phys. J. B 90, 192 (2017) CrossRefGoogle Scholar
  24. 24.
    H.R. Ma, B.S. Zhang, W.Y. Tam, P. Sheng, Phys. Rev. B 61, 962 (2000) CrossRefGoogle Scholar
  25. 25.
    Y.L. Geng, X.B. Wu, L.W. Li, B.R. Guan, Phys. Rev. E 70, 056609 (2004) CrossRefGoogle Scholar
  26. 26.
    C.W. Qiu, L.W. Li, T.S. Yeo, S. Zouhdi, Phys. Rev. E 76, 039903 (2007) CrossRefGoogle Scholar
  27. 27.
    G.Q. Gu, E.B. Wei, Y.M. Poon, F.G. Shin, Phys. Rev. B 76, 064203 (2007) CrossRefGoogle Scholar
  28. 28.
    M. Cristea E.C. Niculescu, Eur. Phys. J. B 85, 191 (2012) CrossRefGoogle Scholar
  29. 29.
    C. Navau, J. Prat-Camps, O. Romero-Isart, J.I. Cirac, A. Sanchez, Phys. Rev. Lett. 112, 253901 (2014) CrossRefGoogle Scholar
  30. 30.
    J.F. Zhu, W. Jiang, Y.C. Liu, G. Yin, J. Yuan, S.L. He, Y.G. Ma, Nat. Commun. 6, 8931 (2015) CrossRefGoogle Scholar
  31. 31.
    R.M. Batlle, A. Parra, S. Laut, N.D. Valle, C. Navau, A. Sanchez, Phys. Rev. Appl. 9, 034007 (2018) CrossRefGoogle Scholar
  32. 32.
    J.C. Maxwell Garnett, Philos. Trans. R. Soc. London Ser. A 203, 385 (1904) CrossRefGoogle Scholar
  33. 33.
    D.A.G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935) CrossRefGoogle Scholar
  34. 34.
    F. Gomory, M. Solovyov, J. Souc, C. Navau, J.P. Camps, A. Sanchez, Science 335, 1466 (2012) CrossRefGoogle Scholar
  35. 35.
    W. Jiang, Y.G. Ma, S.L. He, Phys. Rev. Appl. 9, 054041 (2018) CrossRefGoogle Scholar
  36. 36.
    Y. Lai, J. Ng, H.Y. Chen, D.Z. Han, J.J. Xiao, Z.Q. Zhang, C.T. Chan, Phys. Rev. Lett. 102, 253902 (2009) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsState Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan UniversityShanghaiP.R. China

Personalised recommendations