Advertisement

Dynamics of an inhomogeneously broadened passively mode-locked laser

  • Alexander Pimenov
  • Andrei G. VladimirovEmail author
Regular Article
  • 53 Downloads
Part of the following topical collections:
  1. Topical issue: Non-Linear and Complex Dynamics in Semiconductors and Related Materials

Abstract

We study theoretically the effect of inhomogeneous broadening of the gain and absorption lines on the dynamics of a passively mode-locked laser. Using numerical simulations of travelling wave equations, we demonstrate the formation of an instability of mode-locking regime and suppression of Q-switching in a laser with large inhomogeneous broadening. Moreover, we derive simplified delay-differential equation model for a mode-locked laser with inhomogeneously broadened gain and absorption lines and perform numerical bifurcation analysis of this model.

Graphical abstract

References

  1. 1.
    H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, D. Bimberg, Opt. Express 18, 3415 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1998) Google Scholar
  3. 3.
    E.U. Rafailov, M.A. Cataluna, W. Sibbett, Nat. Photon. 1, 395 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    M. Grundmann, Physica E 5, 167 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    V.S. Idiatulin, A.V. Uspenskii, Radio Eng. Electron. Phys. 18, 422 (1973) Google Scholar
  6. 6.
    L.W. Casperson, Phys. Rev. A 21, 911 (1980) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Graham, Y. Cho, Opt. Commun. 47, 52 (1983) ADSCrossRefGoogle Scholar
  8. 8.
    L.A. Lugiato, L.M. Narducci, D.K. Bandy, N.B. Abraham, Opt. Commun. 46, 115 (1983) ADSCrossRefGoogle Scholar
  9. 9.
    P. Mandel, Opt. Commun. 44, 400 (1983) ADSCrossRefGoogle Scholar
  10. 10.
    B. Meziane, Opt. Commun. 75, 287 (1990) ADSCrossRefGoogle Scholar
  11. 11.
    B. Meziane, Opt. Commun. 128, 377 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    E. Roldán, G.J. de Valcárcel, F. Silva, J. Opt. Soc. Am. B 18, 1601 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    E. Roldán, G.J. de Valcárcel, Phys. Rev. A 64, 053805 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    F. Prati, E.M. Pessina, G.J. de Valcárcel, E. Roldán, Opt. Commun. 237, 189 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    C. Xing, E.A. Avrutin, J. Appl. Phys. 97, 104301 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    M. Rossetti, P. Bardella, I. Montrosset, IEEE J. Quant. Electron. 47, 139 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    M. Gioannini, P. Bardella, I. Montrosset, IEEE J. Sel. Top. Quant. Electron. 21, 1 (2015) CrossRefGoogle Scholar
  18. 18.
    L.L. Columbo, P. Bardella, I. Montrosset, M. Gioannini, in 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (2017) Google Scholar
  19. 19.
    L.L. Columbo, P. Bardella, M. Gioannini, Opt. Express 26, 19044 (2018) ADSCrossRefGoogle Scholar
  20. 20.
    E. Cabrera, O.G. Calderón, J.M. Guerra, Phys. Rev. A 70, 063808 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    J. Mukherjee, J.G. McInerney, Phys. Rev. A 79, 053813 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986) Google Scholar
  23. 23.
    J. Zehetner, C. Spielmann, E. Krausz, Opt. Lett. 17, 871 (1992) ADSCrossRefGoogle Scholar
  24. 24.
    A.G. Vladimirov, D. Turaev, Radiophys. Quant. Electron. 47, 857 (2004) CrossRefGoogle Scholar
  25. 25.
    A.G. Vladimirov, D. Turaev, G. Kozyreff, Opt. Lett. 29, 1221 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    A.G. Vladimirov, D. Turaev, Phys. Rev. A 72, 033808 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    M. Lichtner, Proc. Am. Math. Soc. 136, 2091 (2008) MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Pimenov, A.G. Vladimirov, Dynamics of an inhomogeneously broadened passively mode-locked laser. WIAS preprint, 2018 Google Scholar
  29. 29.
    A.G. Vladimirov, A.S. Pimenov, D. Rachinskii, IEEE J. Quant. Electr. 45, 462 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    A. Vladimirov, U. Bandelow, G. Fiol, D. Arsenijević, M. Kleinert, D. Bimberg, A. Pimenov, D. Rachinskii, J. Opt. Soc. B 27, 2102 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    U. Bandelow, M. Radziunas, J. Sieber, M. Wolfrum, IEEE J. Quant. Electr. 37, 183 (2001) ADSCrossRefGoogle Scholar
  32. 32.
    J. Javaloyes, S. Balle, Opt. Express 20, 8496 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    E. Viktorov, P. Mandel, A.G. Vladimirov, U. Bandelow, Appl. Phys. Lett. 88, 201102 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    W.E. Lamb Jr, Phys. Rev. 134, A1429 (1964) ADSCrossRefGoogle Scholar
  35. 35.
    K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL v.2.00: A MATLAB package for bifurcation analysis of delay differential equations. Tech. Rep. TW-330, K. U. Leuven, 2001 Google Scholar
  36. 36.
    E.A. Avrutin, E.L. Portnoi, Opt. Quant. Electron 40, 655 (2008) CrossRefGoogle Scholar
  37. 37.
    C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, J. Opt. Soc. Am. B 16, 46 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Weierstrass InstituteBerlinGermany
  2. 2.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia

Personalised recommendations