Advertisement

General symmetry in the reduced dynamics of two-level system

  • Buang Ann TayEmail author
Regular Article
  • 16 Downloads
Part of the following topical collections:
  1. Topical issue: Non-Linear and Complex Dynamics in Semiconductors and Related Materials

Abstract

We study general transformation on the density matrix of two-level system that keeps the expectation value of observable invariant. We introduce a set of generators that yields Hermiticity and trace preserving general transformation which casts the transformation into simple form. The general transformation is in general not factorized and not completely positive. Consequently, either the parameter of transformation or the density matrix it acts on needs to be restricted. It can transform the system in the forward and backward direction with regard to its parameter, not as a semigroup in the time translation symmetry of dynamical maps. The general transformation can rotate the Bloch vector circularly or hyperbolically, dilate it or translate it. We apply the general transformation to study the general symmetry of amplitude damping and phase damping in two-level system. We generalize the generators to higher level systems.

Graphical abstract

References

  1. 1.
    P.A.M. Dirac, Principles of Quantum Mechanics, 4th edn. (Oxford, New York, 1958) Google Scholar
  2. 2.
    J. von Neumann, Mathematical Foundations Of Quantum Mechanics (Princeton University Press, Princeton, 1955) Google Scholar
  3. 3.
    H.-P. Breuer, F. Petruccione, in The Theory of Open Quantum Systems (Oxford, New York, 2002), p. 120 Google Scholar
  4. 4.
    E.P. Wigner, Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959) Google Scholar
  5. 5.
    S. Weinberg, Phys. Rev. A 90, 042102 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    A. Maassen van den Brink, A. Zagoskin, Q. Info. Proc. 1, 55 (2002) CrossRefGoogle Scholar
  7. 7.
    B.A. Tay, Physica A 468, 578 (2017) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    E.C.G. Sudarshan, P.M. Mathews, J. Rau, Phys. Rev. 121, 920 (1961) ADSCrossRefGoogle Scholar
  9. 9.
    K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory (Springer-Verlag, Berlin, 1983) Google Scholar
  10. 10.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976) ADSCrossRefGoogle Scholar
  11. 11.
    V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, E.C.G. Sudarshan, Rep. Math. Phys. 13, 149 (1978) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976) ADSCrossRefGoogle Scholar
  13. 13.
    E. Sudarshan, Chaos Solitons Fractals 16, 369 (2003) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    E.C.G. Sudarshan, A. Shaji, J. Phys. A: Math. Gen. 36, 5073 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    K. Życzkowski, I. Bengtsson, Open Syst. Inf. Dyn. 11, 3 (2004) MathSciNetCrossRefGoogle Scholar
  16. 16.
    E.C.G. Sudarshan, Group theory of dynamical maps, in Quantum Information and Computing, edited by L. Accardi, M. Ohya, N. Watanabe (World Scientific, Singapore, 2006) pp. 313–323 Google Scholar
  17. 17.
    P. Pechukas, Phys. Rev. Lett. 73, 1060 (1994) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Shaji, E.C.G. Sudarshan, Phys. Lett. A 341, 48 (2005) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    T.F. Jordan, A. Shaji, E.C.G. Sudarshan, Phys. Rev. A 70, 052110 (2004) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M.B. Ruskai, S. Szarek, E. Werner, Linear Algebra Appl. 347, 159 (2002) MathSciNetCrossRefGoogle Scholar
  21. 21.
    C. King, M.B. Ruskai, IEEE Trans. Inf. Theory 47, 192 (2001) CrossRefGoogle Scholar
  22. 22.
    D.K.L. Oi, arXiv:quant-ph/0106035 (2001)
  23. 23.
    S. Daffer, K. Wódkiewicz, J.K. McIver, Phys. Rev. A 67, 062312 (2003) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Arrighi, C. Patricot, J. Phys. A Math. Gen. 36, L287 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    Y.-C. Ou, M.S. Byrd, Phys. Rev. A 82, 022325 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    B.A. Tay, T. Petrosky, Phys. Rev. A 76, 042102 (2007) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Suárez, R. Silbey, I. Oppenheim, J. Chem. Phys. 97, 5101 (1992) ADSCrossRefGoogle Scholar
  28. 28.
    P. Gaspard, M. Nagaoka, J. Chem. Phys. 111, 5668 (1999) ADSCrossRefGoogle Scholar
  29. 29.
    R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (John Wiley & Sons, New York, 1974) Google Scholar
  30. 30.
    I. Prigogine, C. George, F. Henin, L. Rosenfeld, Chem. Scr. 4, 5 (1973) Google Scholar
  31. 31.
    A. Fujiwara, P. Algoet, Phys. Rev. A 59, 3290 (1999) ADSCrossRefGoogle Scholar
  32. 32.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge, New York, 2000) Google Scholar
  33. 33.
    S. Kim, G. Ordonez, Phys. Rev. E 67, 056117 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    T. Tilma, E.C.G. Sudarshan, J. Phys. A: Math. Gen. 35, 10467 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    A.J. MacFarlane, A. Sudbery, P.H. Weisz, Commun. Math. Phys. 11, 77 (1968) ADSCrossRefGoogle Scholar
  36. 36.
    J.A. De Azcárraga, A.J. MacFarlane, Int. J. Mod. Phys. A 16, 1377 (2001) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Foundation StudiesFaculty of Science and Engineering, The University of Nottingham Malaysia CampusJalan Broga, SemenyihMalaysia

Personalised recommendations