Advertisement

Coupled elastic membranes model for quantum heat transport in semiconductor nanowires

  • Julian A. LawnEmail author
  • Daniel S. Kosov
Regular Article
  • 28 Downloads

Abstract

Presented here is a nanowire model, consisting of coupled elastic membranes with the purpose of investigating thermal transport in quasi-one-dimensional quantum systems. The vibrations of each elastic membrane are quantized and the flow of the vibrational energy between adjacent membranes is allowed. The ends of the nanowire are attached to thermal baths held at different temperatures. We derived quantum master equation for energy flow across the nanowire and obtained thermal currents and other key observables. We study the effects of a disordered boundary on the thermal current by randomizing the membrane radii. We evaluate the model as a nanowire analogue as well as study the effects of a disordered boundary on thermal conductivity. The calculations show that the membrane lattice model demonstrates diameter phonon confinement and a severe reduction in thermal conductivity due to surface roughness which is characteristic of semiconductor nanowires. The surface roughness also produces a length dependence of the thermal conductivity of the form κ = αLβ, with β dependent on disorder characteristics, in the otherwise ballistic regime. Finally, the parameters of the model are fitted to available experimental data for silicon nanowires and the results of the calculations are assessed against the experimental data.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    Z. Rieder, J.L. Lebowitz, E. Lieb, J. Math. Phys. 8, 1073 (1967) ADSCrossRefGoogle Scholar
  2. 2.
    V. Peshkov, J. Phys. (Moscow) 8, 381 (1944) Google Scholar
  3. 3.
    R.A. Guyer, J.A. Krumhansl, Phys. Rev. 148, 778 (1966) ADSCrossRefGoogle Scholar
  4. 4.
    A. Casher, J.L. Lebowitz, J. Math. Phys. 12, 1701 (1971) ADSCrossRefGoogle Scholar
  5. 5.
    B. Hu, B. Li, H. Zhao, Phys. Rev. E 57, 2992 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    S. Lepri, R. Livi, A. Politi, Phys. Rev. Lett. 78, 1896 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    T. Hatano, Phys. Rev. E 59, 1 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    S. Lepri, R. Livi, A. Politi, Physica D 119, 140 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    O. Narayan, S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    T.E. Humphrey, H. Linke, Phys. Rev. Lett. 94, 096601 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    A. Hochbaum, R. Chen, R.D. Delago, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    N. Mingo, L. Yang, Nano Lett. 3, 1713 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    L. Liang, B. Li, Phys. Rev. B 73, 153303 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    A.L. Moore, S.K. Saha, R.S. Prasher, L. Shi, Appl. Phys. Lett. 93, 083112 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    D. Donadio, G. Galli, Phys. Rev. Lett. 102, 195901 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    P. Martin, Z. Aksamija, E. Pop, U. Rabaioli, Phys. Rev. Lett. 102, 125503 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    Y.A. Kosevich, A.V. Savin, Europhys. Lett. 88, 14002 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    M. Luisier, J. Appl. Phys. 110, 074510 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    C. Blanc, A. Rajabpour, S. Volz, T. Fournier, O. Bourgeois, Appl. Phys. Lett. 103, 043109 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    J. Carrete, L.J. Gallego, L.M. Varela, Phys. Rev. B 84, 075403 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    J. Sadhu, S. Sinha, Phys. Rev. B 84, 115450 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    J. Lim, K. Hippalgaonkar, S.C. Andrews, A. Majumdar, P. Yang, Nano Lett. 12, 2475 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    N. Yang, G. Zhang, B. Li, Nano Today 5, 85 (2010) CrossRefGoogle Scholar
  25. 25.
    J. Maire, R. Anufriev, M. Nomura, Sci. Rep. 7, 41794 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    N.H. Asmar, Partial differential equations with Fourier series and boundary value problems (Dover Publications, Upper Saddle River, N.J., 2005) Google Scholar
  27. 27.
    A. Dhar, Phys. Rev. Lett. 86, 5882 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    C. Hou, J. Xu, W. Ge, J. Li, Model. Simulat. Mater. Sci. Eng. 24, 045005 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Science and Engineering, James Cook UniversityTownsvilleAustralia

Personalised recommendations