Advertisement

Active control of near-field radiative heat transfer via multiple coupling of surface waves with graphene plasmon

  • Yi-Fan LiaoEmail author
  • Guo-You Wang
Regular Article
  • 57 Downloads

Abstract

It is known that the surface plasmons (SPs) supported by graphene can be strongly coupled with electric SPs supported by the metamaterial and with symmetric and antisymmetric surface phonon polaritons (SPhPs) supported by silicon carbide (SiC). It has been shown that coated SiC thin films can efficiently enhance near-field radiative heat transfer between metamaterials. In this study, we theoretically investigate near-field heat transfer between graphene–SiC–graphene–metamaterial (GSGM) multilayer structures. The heat transfer between GSGM structures is significantly larger than that between SiC-coated metamaterials when the chemical potential of graphene is not very high. Moreover, the structure proposed in this study behaves much better than the previous SiC/graphene/metamaterial in enhancing the near-field radiative heat transfer. The findings in this study provide a basis for active controlling of near-field radiative heat transfer.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    D. Polder, M. Van Hove, Phys. Rev. B 4, 3303 (1971) CrossRefGoogle Scholar
  2. 2.
    N. Arvind, G. Chen, Appl. Phys. Lett. 82, 3544 (2003) CrossRefGoogle Scholar
  3. 3.
    K. Park, S. Basu, W.P. King, Z.M. Zhang, J. Quant. Spectr. Radiat. Transf. 109, 305 (2008) CrossRefGoogle Scholar
  4. 4.
    M. Riccardo, B.A. Philippe, Sci. Rep. 3, 1383 (2013) CrossRefGoogle Scholar
  5. 5.
    B. Guha, C. Otey, C.B. Poitras, S. Fan, M. Lipson, Nano Lett. 12, 4546 (2012) CrossRefGoogle Scholar
  6. 6.
    P. Ben-Abdallah, S.A. Biehs, Phys. Rev. Lett. 112, 044301 (2014) CrossRefGoogle Scholar
  7. 7.
    W. Muller Hirsch, A. Kraft, M.T. Hirsch, J. Parisi, A. Kittel, J. Vac. Sci. Technol. A 17, 1205 (1999) CrossRefGoogle Scholar
  8. 8.
    A. Kittel, W. Müller Hirsch, J. Parisi, D. Reddig, M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005) CrossRefGoogle Scholar
  9. 9.
    A. Kittel, U.F. Wischnath, J. Welker, Appl. Phys. Lett. 93, 193109 (2008) CrossRefGoogle Scholar
  10. 10.
    A.C. Jones, B.T. O’Callahan, H.U. Yang, M.B. Raschke, Prog. Surf. Sci. 88, 349 (2013) CrossRefGoogle Scholar
  11. 11.
    J.C. Cuevas, F.J. García-Vidal, ACS Photonics 5, 3896 (2018) CrossRefGoogle Scholar
  12. 12.
    A.I. Volokitin, B.N.J. Persson, Rev. Mod. Phys. 79, 1291 (2007) CrossRefGoogle Scholar
  13. 13.
    S.A. Biehs, M. Tschikin, Phys. Rev. Lett. 109, 104301 (2012) CrossRefGoogle Scholar
  14. 14.
    K. Joulain, J. Drevillon, Phys. Rev. B 81, 165199 (2010) CrossRefGoogle Scholar
  15. 15.
    A.I. Volokitin, B.N.J. Persson, Phys. Rev. B 83, 241407(R) (2011) CrossRefGoogle Scholar
  16. 16.
    S.A. Biehs, M. Tschikin, R. Messina, P. Ben-Abdallah, Appl. Phys. Lett. 102, 131106 (2013) CrossRefGoogle Scholar
  17. 17.
    V.B. Svetovoy, P.J.V. Zwol, J. Chevrier, Phys. Rev. B 85, 155418 (2012) CrossRefGoogle Scholar
  18. 18.
    S. Basu, Y. Yang, L. Wang, Appl. Phys. Lett. 106, 033106 (2015) CrossRefGoogle Scholar
  19. 19.
    A.I. Volokitin, B.N.J. Persson, Phys. Rev. B 63, 205404 (2001) CrossRefGoogle Scholar
  20. 20.
    H. Iizuka, S. Fan, Phys. Rev. Lett. 120, 063901 (2018) CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, H.-L. Yi, H.-P. Tan, ACS Photonics 5, 3739 (2018) CrossRefGoogle Scholar
  22. 22.
    K. Shi, R. Liao, G. Cao, F. Bao, S. He, Opt. Express 26, A591 (2018) CrossRefGoogle Scholar
  23. 23.
    T. Kralik, P. Hanzelka, V. Musilova, A. Srnka, M. Zobac, Rev. Sci. Instrum. 82, 055106 (2011) CrossRefGoogle Scholar
  24. 24.
    R. St-Gelais, B. Guha, L. Zhu, S. Fan, M. Lipson, Nano Lett. 14, 6971 (2014) CrossRefGoogle Scholar
  25. 25.
    R.S. Ottens, V. Quetschke, S. Wise, A.A. Alemi, R. Lundock, G. Mueller, D.H. Reitze, D.B. Tanner, B.F. Whiting, Phys. Rev. Lett. 107, 014301 (2011) CrossRefGoogle Scholar
  26. 26.
    D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003) CrossRefGoogle Scholar
  27. 27.
    I.S. Nefedov, C.R. Simovski, Phys. Rev. B 84, 195459 (2011) CrossRefGoogle Scholar
  28. 28.
    Y. Guo, L.C. Cortes, S. Molesky, Z. Jacob, Appl. Phys. Lett. 101, 131106 (2012) CrossRefGoogle Scholar
  29. 29.
    L.A. Falkovsky, S.S. Pershoguba, Phys. Rev. B 76, 153410 (2007) CrossRefGoogle Scholar
  30. 30.
    T. Stauber, N.M.R. Peres, A.K. Geim, Phys. Rev. B 78, 085432 (2008) CrossRefGoogle Scholar
  31. 31.
    L.A. Falkovsky, J. Phys. Conf. Ser. 129, 012004 (2008) CrossRefGoogle Scholar
  32. 32.
    P. Avouris, Nano Lett. 10, 4285 (2010) CrossRefGoogle Scholar
  33. 33.
    B.N.J. Persson, H. Ueba, J. Phys.: Condens. Matter 22, 462201 (2010) Google Scholar
  34. 34.
    O. Ilic, M. Jablan, D. Joannopoulos, I. Celanovic, H. Buljan, M. Soljačić, Phys. Rev. B 85, 155422 (2012) CrossRefGoogle Scholar
  35. 35.
    P. Ben-Abdallah, A. Belarouci, L. Frechette, S.A. Biehs, Appl. Phys. Lett. 107, 053109 (2015) CrossRefGoogle Scholar
  36. 36.
    Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, N. Liu, J. Phys. D: Appl. Phys. 50, 145101 (2017) CrossRefGoogle Scholar
  37. 37.
    T. Zhou, C.-C. Song, T.-B. Wang, W.-X. Liu, J.-T. Liu, T.-B. Yu, Q.-H. Liao, N.-H. Liu, AIP Adv. 7, 055213 (2017) CrossRefGoogle Scholar
  38. 38.
    J. Pendry, A. Holden, D. Robbins, W. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999) CrossRefGoogle Scholar
  39. 39.
    E. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998) Google Scholar
  40. 40.
    S.A. Biehs, Eur. Phys. J. B 58, 423 (2007) CrossRefGoogle Scholar
  41. 41.
    M. Lim, S.S. Lee, B.J. Lee, Opt. Express 21, 22173 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Automation, Huazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations