Advertisement

The linear Dirac spectrum and the Weyl states in the Drude-Sommerfeld topological model

  • Mauro M. DoriaEmail author
Regular Article
  • 48 Downloads

Abstract

Weyl fermions are shown to exist in a Drude-Sommerfeld topological model (DSTM), that features nearly free carriers in topological protected states under residual collisions. The Weyl fermion features a weak magnetic field around it, produced by its own currents, that dresses it, and is the key to its topological stability. The Weyl fermion state results from a Schroedinger like hamiltonian for particles with spin and magnetic energy which are momentum confined to a layer [M.M. Doria, A. Perali, Europhys. Lett. 119, 21001 (2017)]. The present mechanism for the onset of Weyl fermion breaks the reflection and time symmetries around the layer and displays an energy gap. Much above this gap the spectrum becomes linear (Dirac) and then momentum and spin become orthogonal (zero helicity state, ZHS). The collision time is shown to be renormalized by the inverse of the square of the gap in the linear Dirac spectrum limit. Hence the Weyl fermions are shown to be intrinsically ballistic in this limit. The Weyl fermion own magnetic field, although very weak, cannot be discarded because it yields a non zero Chern-Simons number, which is here calculated in the Dirac limit. The electrical and the thermal conductivities of the Weyl fermions are derived in the framework of a constant relaxation time. The Lorenz number coefficient associated to the Wiedemman-Franz law acquires asymptotic value of 6.5552 times the bulk value of π2∕3.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    P. Miro, M. Audiffred, T. Heine, Chem. Soc. Rev. 43, 6537 (2014) CrossRefGoogle Scholar
  2. 2.
    J. Nevalaita, P. Koskinen, Phys. Rev. B 97, 035411 (2018) ADSCrossRefGoogle Scholar
  3. 3.
    I. Tamm, Phys. Z. Soviet Union 1, 733 (1932) Google Scholar
  4. 4.
    W. Shockley, Phys. Rev. 56, c317 (1939) ADSCrossRefGoogle Scholar
  5. 5.
    D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nature 452, 970 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nat. Phys. 5, 398 (2009) CrossRefGoogle Scholar
  7. 7.
    I. Bozovic, C. Ahn, Nat. Phys. 10, 892 (2014) CrossRefGoogle Scholar
  8. 8.
    T. Uchihashi, Supercond. Sci. Technol. 30, 013002 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    C. Brun, T. Cren, D. Roditchev, Supercond. Sci. Technol. 30, 013003 (2017) ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    J. Wang, S. Deng, Z. Liu, Z. Liu, Natl. Sci. Rev. 2, 22 (2015) CrossRefGoogle Scholar
  12. 12.
    S.M. Young, C.L. Kane, Phys. Rev. Lett. 115, 126803 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    P.R. Wallace, Phys. Rev. 71, 622 (1947) ADSCrossRefGoogle Scholar
  14. 14.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, 1998) Google Scholar
  15. 15.
    A.A. Abrikosov, Phys. Rev. B 58, 2788 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Abrikosov, Phys. Rev. B 60, 4231 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    A.A. Abrikosov, Europhys. Lett. 49, 789 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Abrikosov, J. Phys. A: Math. General 36, 9119 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    W. Zhang, R. Yu, W. Feng, Y. Yao, H. Weng, X. Dai, Z. Fang, Phys. Rev. Lett. 106, 156808 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    R. Xu, A. Husmann, T.F. Rosenbaum, M.-L. Saboungi, J.E. Enderby, P.B. Littlewood, Nature 390, 57 (1997) ADSCrossRefGoogle Scholar
  21. 21.
    S.L. Bud’ko, P.C. Canfield, C.H. Mielke, A.H. Lacerda, Phys. Rev. B 57, 13624 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    B. Péter, D. Balázs, M. Roderich, Phys. Status Solidi B 248, 2627 (2011) CrossRefGoogle Scholar
  23. 23.
    S. Sadeddine, H. Enriquez, A. Bendounan, P. Kumar Das, I. Vobornik, A. Kara, A.J. Mayne, F. Sirotti, G. Dujardin, H. Oughaddou, Sci. Rep. 7, 44400 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Nat. Phys. 5, 438 (2009) CrossRefGoogle Scholar
  25. 25.
    M. Hirata, K. Ishikawa, K. Miyagawa, M. Tamura, C. Berthier, D. Basko, A. Kobayashi, G. Matsuno, K. Kanoda, Nat. Commun. 7, 12666 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    G. Li, B. Yan, Z. Wang, K. Held, Phys. Rev. B 95, 035102 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    M.Z. Hasan, S.-Y. Xu, I. Belopolski, S.-M. Huang, Annu. Rev. Condens. Matter Phys. 8, 289 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    Z.T. Liu, X.Z. Xing, M.Y. Li, W. Zhou, Y. Sun, C.C. Fan, H.F. Yang, J.S. Liu, Q. Yao, W. Li, Z.X. Shi, D.W. Shen, Z. Wang, Appl. Phys. Lett. 109, 042602 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    K.K. Huynh, Y. Tanabe, K. Tanigaki, Phys. Rev. Lett. 106, 217004 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    T. Terashima, H.T. Hirose, D. Graf, Y. Ma, G. Mu, T. Hu, K. Suzuki, S. Uji, H. Ikeda, Phys. Rev. X 8, 011014 (2018) Google Scholar
  31. 31.
    M. Sakano, K. Okawa, M. Kanou, H. Sanjo, T. Okuda, T. Sasagawa, K. Ishizaka, Nat. Commun. 6, 8595 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    M. Lee, T.F. Rosenbaum, M.-L. Saboungi, H.S. Schnyders, Phys. Rev. Lett. 88, 066602 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    L.P. He, X.C. Hong, J.K. Dong, J. Pan, Z. Zhang, J. Zhang, S.Y. Li, Phys. Rev. Lett. 113, 246402 (2014) ADSCrossRefGoogle Scholar
  34. 34.
    T. Liang, Q. Gibson, M.N. Ali, M. Liu, R.J. Cava, N.P. Ong, Nat. Mater. 14, 280 (2014) ADSCrossRefGoogle Scholar
  35. 35.
    A. Narayanan, M.D. Watson, S.F. Blake, N. Bruyant, L. Drigo, Y.L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P.C. Canfeld, A.I. Coldea, Phys. Rev. Lett. 114, 117201 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    X.Z. Xing, C.Q. Xu, N. Zhou, B. Li, J. Zhang, Z.X. Shi, X. Xu, Appl. Phys. Lett. 109, 122403 (2016) ADSCrossRefGoogle Scholar
  37. 37.
    M.M. Doria, A. Perali, Europhys. Lett. 119, 21001 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    T. Stauber, N.M.R. Peres, F. Guinea, A.H. Castro Neto, Phys. Rev. B 75, 115425 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    D. Wickramaratne, F. Zahid, R.K. Lake, J. Appl. Phys. 118, 075101 (2015) ADSCrossRefGoogle Scholar
  40. 40.
    I. Jo, Y. Liu, L.N. Pfeiffer, K.W. West, K.W. Baldwin, M. Shayegan, R. Winkler, Phys. Rev. B 95, 035103 (2017) ADSCrossRefGoogle Scholar
  41. 41.
    N.M.R. Peres, J.M.B. Lopes dos Santos, T. Stauber, Phys. Rev. B 76, 073412 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    H.L. Stormer, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. B 41, 1278 (1990) ADSCrossRefGoogle Scholar
  43. 43.
    D.K. Efetov, P. Kim, Phys. Rev. Lett. 105, 256805 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    N. Ashcroft, N. Mermin, Solid State Physics (Saunders College, 1976) Google Scholar
  45. 45.
    R.C.V. Coelho, M. Mendoza, M.M. Doria, H.J. Herrmann, Phys. Rev. B 96, 184307 (2017) ADSCrossRefGoogle Scholar
  46. 46.
    C.H. Li, O.M.J. van’t Erve, J.T. Robinson, Y. Liu, L. Li, B.T. Jonker, Nat. Nanotechnol. 9, 218 (2014) ADSCrossRefGoogle Scholar
  47. 47.
    D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nature 460, 1101 (2009) ADSCrossRefGoogle Scholar
  48. 48.
    B. Dup’e, M. Hoffmann, C. Paillard, S. Heinze, Nat. Commun. 5, 4030 (2014) ADSCrossRefGoogle Scholar
  49. 49.
    D. Bazeia, M. Doria, E. Rodrigues, Phys. Lett. A 380, 1947 (2016) ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, G. Bartal, Science 361, 993 (2018) ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    M.M. Doria, M. Cariglia, A. Perali, Phys. Rev. B 94, 224513 (2016) ADSCrossRefGoogle Scholar
  52. 52.
    S. Hoinka, P. Dyke, M.G. Lingham, J.J. Kinnunen, G.M. Bruun, C.J. Vale, Nat. Phys. 13, 943 (2017) CrossRefGoogle Scholar
  53. 53.
    A.A. Vargas-Paredes, M.M. Doria, J.A.H. Neto, J. Math. Phys. 54, 013101 (2013) ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    M.M. Doria, A.A. Vargas-Paredes, M. Cariglia, Supercond. Sci. Technol. 27, 124008 (2014) ADSCrossRefGoogle Scholar
  55. 55.
    A.A. Vargas-Paredes, M. Cariglia, M.M. Doria, J. Magn. Magn. Mater. 376, 40 (2015) ADSCrossRefGoogle Scholar
  56. 56.
    E.I.B. Rodrigues, A.A. Vargas-Paredes, M.M. Doria, M. Cariglia, J. Supercond. Novel Magn. 30, 1327 (2017) CrossRefGoogle Scholar
  57. 57.
    E.I.B. Rodrigues, M.M. Doria, A.A. Vargas-Paredes, M. Cariglia, A. Perali, J. Supercond. Novel Magn. 30, 145 (2017) CrossRefGoogle Scholar
  58. 58.
    M. Cariglia, A.A. Vargas-Paredes, M.M. Doria, Europhys. Lett. 105, 31002 (2014) ADSCrossRefGoogle Scholar
  59. 59.
    K.C. Fong, E.E. Wollman, H. Ravi, W. Chen, A.A. Clerk, M.D. Shaw, H.G. Leduc, K.C. Schwab, Phys. Rev. X 3, 041008 (2013) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Física, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Física “Gleg Wataghin”, Universidade Estadual de CampinasCampinasBrazil

Personalised recommendations