Advertisement

Squeezing of nonlinear magnons in obliquely-magnetized nanowires under microwave pumping

  • Zahra HaghshenasfardEmail author
  • Michael G. Cottam
Regular Article
  • 35 Downloads

Abstract

Theoretical studies are reported for the non-classical quantum statistical behavior of bosonic excitations in obliquely-magnetized nanowires under condition of microwave pumping. A dipole-exchange Hamiltonian is employed in which the external magnetic field is transverse to the length of the ferromagnetic nanowire, causing the magnetization to be canted away from the symmetry axis. Using a coherent magnon states representation we obtain explicit results for the temporal evolution of the magnon creation and annihilation operators. Applications are presented in the perpendicular pumping configuration for the initial collapse and then revival of the magnon occupation number, the super-Poissonian magnon-counting statistics, and the magnon squeezing. It is found that all of these processes are enhanced by having an oblique-magnetization state in the nanowire. For comparison, we also present results when the microwave pumping field is in the orientation parallel to the magnetization. It is found that the parallel and perpendicular microwave pumping configurations lead to important differences in the time dependences.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley, Phys. Rev. Lett. 55, 2409 (1985) ADSCrossRefGoogle Scholar
  2. 2.
    H. Yuen, J. Shapir, IEEE Trans. Inf. Theory 24, 657 (1978) ADSCrossRefGoogle Scholar
  3. 3.
    I. Averbukh, M. Shapiro, Phys. Rev. A 47, 5086 (1993) ADSCrossRefGoogle Scholar
  4. 4.
    S.L. Johnson, P. Beaud, E. Vorobeva, C.J. Milne, E.D. Murray, S. Fahy, G. Ingold, Phys. Rev. Lett. 102, 175503 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    M. Artoni, J.L. Birman, Phys. Rev. B 44, 3736 (1991) ADSCrossRefGoogle Scholar
  6. 6.
    R. Auccaise, A.G. Araujo-Ferreira, R.S. Sarthour, I.S. Oliveira, T.J. Bonagamba, I. Roditi, Phys. Rev. Lett. 114, 043604 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    Z. Jimin, A.V. Bragas, D.J. Lockwood, R. Merlin, Phys. Rev. Lett. 93, 107203 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    Z. Jimin, A.V. Bragas, R. Merlin, D.J. Lockwood, Phys. Rev. B 73, 184434 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    F. Peng, Europhys. Lett. 54, 688 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    J. Wang, Z. Cheng, Y. Ping, J. Wan, A.A. Serga, Y. Zhang, Phys. Lett. A 353, 427 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    F. Peng, Physica B 334, 183 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 29, 045803 (2017) ADSGoogle Scholar
  13. 13.
    E. Schlömann, J.J. Green, U. Milano, J. Appl. Phys. 31, S386 (1960) CrossRefGoogle Scholar
  14. 14.
    N. Bloembergen, S. Wang, Phys. Rev. 93, 72 (1954) ADSCrossRefGoogle Scholar
  15. 15.
    H. Suhl, J. Phys. Chem. Solids 1, 209 (1957) ADSCrossRefGoogle Scholar
  16. 16.
    M.G. Cottam, A.N. Slavin, in Linear and Nolinear Spin Waves in Magnetic Films and Superlattices, edited by M.G. Cottam (World Scientific, Singapore, 1994), p. 1 Google Scholar
  17. 17.
    D.D. Stancil, A. Prabhakar, in Spin Waves: Theory and Applications (Springer, US, 2009), p. 351 Google Scholar
  18. 18.
    S.M. Rezende, N. Zagury, Phys. Lett. A 29, 47 (1969) ADSCrossRefGoogle Scholar
  19. 19.
    N. Zagury, S.M. Rezende. Phys. Lett. A 29, 616 (1969) ADSCrossRefGoogle Scholar
  20. 20.
    S.M. Rezende, in Magnonics: From Fundamentals to Applications, edited by S.O. Demokritov, A.N. Slavin (Springer, US, 2013), p. 39 Google Scholar
  21. 21.
    M.O. Scully, M.S. Zubairy, in Quantum Optics (Cambridge University Press, UK, 1997), p. 656 Google Scholar
  22. 22.
    S.M. Rezende. J. Phys.: Condens. Matter 22, 164211 (2010) ADSGoogle Scholar
  23. 23.
    S.M. Rezende. Phys. Rev. B 79, 174411 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Nature 443, 430 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    V.E. Demidov, O. Dzyapko, S.O. Demokritov, G.A. Melkov, A.N. Slavin. Phys. Rev. Lett. 100, 047205 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    C.B. de Araujo, S.M. Rezende, Phys. Rev. B 9, 3074 (1974) ADSCrossRefGoogle Scholar
  27. 27.
    C.B. de Araujo, Phys. Rev. B 10, 3961 (1974) ADSCrossRefGoogle Scholar
  28. 28.
    N. Zagury, S.M. Rezende, Phys. Rev. B 4, 201 (1971) ADSCrossRefGoogle Scholar
  29. 29.
    Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 29, 195801 (2017) ADSGoogle Scholar
  30. 30.
    Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 30, 025802 (2018) ADSGoogle Scholar
  31. 31.
    Z. Haghshenasfard, M.G. Cottam, IEEE Trans. Magn. 54, 1300609 (2018) CrossRefGoogle Scholar
  32. 32.
    R.N. Costa Filho, M.G. Cottam, G.A. Farias, Phys. Rev. B 62, 6545 (2000) ADSCrossRefGoogle Scholar
  33. 33.
    H.T. Nguyen, A. Akbari-Sharbaf, M.G. Cottam, Phys. Rev. B 83, 214423 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940) ADSCrossRefGoogle Scholar
  35. 35.
    R.M. White, in Quantum Theory of Magnetism (Springer-Verlag, Berlin, Heidelberg, 2007), p. 359 Google Scholar
  36. 36.
    Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 30, 425802 (2018) Google Scholar
  37. 37.
    W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954) CrossRefGoogle Scholar
  38. 38.
    A. Kamra, W. Belzig, Phys. Rev. Lett. 116, 146601 (2016) ADSCrossRefGoogle Scholar
  39. 39.
    W. Belzig, Phys. Rev. B 71, 161301 (2005) ADSCrossRefGoogle Scholar
  40. 40.
    Y.-S. Park, Y. Ghosh, Y. Chen, A. Piryatinski, P. Xu, N.H. Mack, H.-L. Wang, V.I. Klimov, J.A. Hollingsworth, H. Htoon, Phys. Rev. Lett. 110, 117401 (2013) ADSCrossRefGoogle Scholar
  41. 41.
    Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 28, 186001 (2016) ADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyThe University of Western OntarioLondonCanada

Personalised recommendations