Advertisement

Influence of grain boundaries on the austenitic and martensitic phase transitions in iron

  • Jerome Meiser
  • Herbert M. UrbassekEmail author
Regular Article
  • 65 Downloads

Abstract

Using classical molecular dynamics simulations, we study the martensitic and austenitic phase transformation in an iron crystal containing a symmetric tilt grain boundary (GB). Without a GB, the system does not transform. The presence of a GB enables the transformation. The new phase nucleates at the GB. The austenitic transition temperature decreases approximately linearly with the GB energy. Here, the GB inherits its inherent periodicity to the microstructure of the forming austenite phase. The martensitic transformation proceeds via a two-step pathway resulting in a twinned microstructure.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Chapman & Hall, London, 1992) Google Scholar
  2. 2.
    E. Pereloma, D.V. Edmonds, eds., in Phase Transformations in Steels, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques (Woodhead Publishing Limited, Cambridge, UK, 2012), Vol. 2 Google Scholar
  3. 3.
    Z. Yang, R.A. Johnson, Model. Simul. Mater. Sci. Eng. 1, 707 (1993) CrossRefGoogle Scholar
  4. 4.
    C. Bos, J. Sietsma, B.J. Thijsse, Phys. Rev. B 1, 104117 (2006) CrossRefGoogle Scholar
  5. 5.
    H.M. Urbassek, L. Sandoval, in Phase Transformations in Steels, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, edited by E. Pereloma, D.V. Edmonds (Woodhead Publishing Limited, Cambridge, UK, 2012), Vol. 2, pp. 433–463 Google Scholar
  6. 6.
    R. Meyer, P. Entel, Phys. Rev. B 1, 5140 (1998) CrossRefGoogle Scholar
  7. 7.
    B. Wang, H.M. Urbassek, Metall. Mater. Trans. A 1, 2471 (2016) CrossRefGoogle Scholar
  8. 8.
    K. Verbeken, L. Barbé, D. Raabe, ISIJ Int. 1, 1601 (2009) CrossRefGoogle Scholar
  9. 9.
    G.H. Zhang, T. Takeuchi, M. Enomoto, Y. Adachi, Metall. Trans. A 1, 1597 (2011) CrossRefGoogle Scholar
  10. 10.
    H. Song, J.J. Hoyt, Model. Simul. Mater. Sci. Eng. 1, 085012 (2015) CrossRefGoogle Scholar
  11. 11.
    J. Meiser, H.M. Urbassek, AIP Adv. 1, 085017 (2016) CrossRefGoogle Scholar
  12. 12.
    G.V. Kurdjumov, G. Sachs, Z. Phys. 1, 325 (1930) CrossRefGoogle Scholar
  13. 13.
    W. Pitsch, Philos. Mag. 1, 577 (1959) CrossRefGoogle Scholar
  14. 14.
    D. Hull, D.J. Bacon, Introduction to Dislocations, 3rd edn. (Pergamon, Oxford, 1984) Google Scholar
  15. 15.
    M.W. Finnis, M. Rühle, in Structure of Solids, Materials Science and Technology, A Comprehensive Treatment, edited by V. Gerold (VCH, Weinheim, 1993), Vol. 1, Chap. 9, p. 533 Google Scholar
  16. 16.
    S. Nose, J. Chem. Phys. 1, 511 (1984) CrossRefGoogle Scholar
  17. 17.
    W.G. Hoover, Phys. Rev. A 1, 1695 (1985) CrossRefGoogle Scholar
  18. 18.
    C. Engin, L. Sandoval, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 1, 035005 (2008) CrossRefGoogle Scholar
  19. 19.
    L. Sandoval, H.M. Urbassek, P. Entel, Phys. Rev. B 1, 214108 (2009) CrossRefGoogle Scholar
  20. 20.
    B. Wang, H.M. Urbassek, Phys. Rev. B 1, 104108 (2013) CrossRefGoogle Scholar
  21. 21.
    B. Wang, E. Sak-Saracino, N. Gunkelmann, H.M. Urbassek, Comput. Mater. Sci. 1, 399 (2014) CrossRefGoogle Scholar
  22. 22.
    B. Wang, E. Sak-Saracino, L. Sandoval, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 1, 045003 (2014) CrossRefGoogle Scholar
  23. 23.
    E. Sak-Saracino, H.M. Urbassek, Eur. Phys. J. B 1, 169 (2015) CrossRefGoogle Scholar
  24. 24.
    X. Ou, Mater. Sci. Technol. 1, 822 (2017) CrossRefGoogle Scholar
  25. 25.
    S. Karewar, J. Sietsma, M.J. Santofimia, Acta Mater. 1, 71 (2018) CrossRefGoogle Scholar
  26. 26.
    Y. Shibuta, S. Takamoto, T. Suzuki, ISIJ Int. 1, 1582 (2008) CrossRefGoogle Scholar
  27. 27.
    A.P. Sutton, V. Vitek, Phil. Trans. R. Soc. Lond. A 1, 1 (1983) CrossRefGoogle Scholar
  28. 28.
    D. Wolf, Philos. Mag. A 1, 447 (1990) CrossRefGoogle Scholar
  29. 29.
    S. Plimpton, J. Comput. Phys. 1, 1 (1995) CrossRefGoogle Scholar
  30. 30.
    J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 1, 4950 (1987) CrossRefGoogle Scholar
  31. 31.
    D. Faken, H. Jonsson, Comput. Mater. Sci. 1, 279 (1994) CrossRefGoogle Scholar
  32. 32.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 1, 015012 (2010) CrossRefGoogle Scholar
  33. 33.
    L. Sandoval, H.M. Urbassek, P. Entel, New J. Phys. 1, 103027 (2009) CrossRefGoogle Scholar
  34. 34.
    R. Freitas, M. Asta, M. de Koning, Comput. Mater. Sci. 1, 333 (2016) CrossRefGoogle Scholar
  35. 35.
    B. Wang, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 1, 085007 (2013) CrossRefGoogle Scholar
  36. 36.
    E. Sak-Saracino, H.M. Urbassek, Int. J. Comput. Mater. Sci. Eng. 1, 1650001 (2016) Google Scholar
  37. 37.
    Y.C. Wang, H. Ye, Philos. Mag. A 1, 261 (1996) Google Scholar
  38. 38.
    H.-K. Mao, W.A. Bassett, T. Takahashi, J. Appl. Phys. 1, 272 (1967) CrossRefGoogle Scholar
  39. 39.
    F.M. Wang, R. Ingalls, Phys. Rev. B 1, 5647 (1998) CrossRefGoogle Scholar
  40. 40.
    P. Entel, R. Meyer, K. Kadau, Philos. Mag. B 1, 183 (2000) CrossRefGoogle Scholar
  41. 41.
    J.L. Dossett, H.E. Boyer, Practical Heat Treating, 2nd edn. (ASM International, Materials Park, OH, USA, 2006) Google Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department and Research Center OPTIMAS, University of KaiserslauternKaiserslauternGermany

Personalised recommendations