Advertisement

Specific absorption rate in Zn-doted ferrites for self-controlled magnetic hyperthermia

  • Angl ApostolovEmail author
  • Iliana Apostolova
  • Julia Wesselinowa
Regular Article

Abstract

In this paper, we study mixed ferrites nanoparticles with structure formula Me1−xZnxFe2O4 (Me = Co, Ni, Cu, Mn) appropriated for self-controlled magnetic hyperthermia (SMHT) for in vivo and in vitro applications. We discuss in details the influence of the size d, the Zn-ion concentration x on the magnetic characteristics: saturation magnetization MS, coercivity HC, effective anisotropy Keff and specific absorption rate (SAR). From a theoretical point of view we investigate monodispersed, non-interactive, single-domain spherical magnetic nanoparticles (MNPs). We propose a simple core–shell model with a constant thickness of the surface layer. We explain the behaviour of SAR as a function of size and dopping based on two thermal heating mechanisms: the mechanism leading to dynamic hysteresis loops of superparamagnetic origin and the heating mechanism via conventional metastable hysteresis. We investigate also a thermal heating efficiency based on the Zn-ion concentration. We show that whether SAR decreases (increases) when doping increases depends on whether the nanoparticle diameter d is smaller (larger) than the particle size dmax for which SAR has a maximum value. The numerical results are in qualitative agreement with many experimental data.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    O. Bruns, H. Ittrich, K. Peldschus, M. Kaul, U. Tromsdorf, J. Lauterwasser, M. Nikovich, B. Mollwitz, M. Merkel, N. Bigall, Nat. Nanotechnol. 4, 193 (2009) Google Scholar
  2. 2.
    Q. Pankhurst, N. Thanh, S. Jones, J. Dabson, J. Phys. D: Appl. Phys. 42, 224001 (2009) Google Scholar
  3. 3.
    A. Gupta, M. Gupta, Biomaterials 26, 3995 (2005) Google Scholar
  4. 4.
    S. Mornet, S. Vasseur, F. Duguet, J. Mater. Chem. 14, 2161 (2004) Google Scholar
  5. 5.
    G. Goya, V. Grazu, M. Idarra, Curr. Nanosci. 4, 1 (2008) Google Scholar
  6. 6.
    Z. Li, M. Kawashita, N. Araki, M. Mitsumori, M. Hiraoka, M. Doi, Mater. Sci. Eng. Mater. Biol. Appl. 30, 990 (2010) Google Scholar
  7. 7.
    R. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002) Google Scholar
  8. 8.
    W. Brown, Phys. Rev. B 130, 1677 (1963) Google Scholar
  9. 9.
    B. Jeyadevan, J. Chem. Soc. Jpn. 118, 391 (2010) Google Scholar
  10. 10.
    E. Perido, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F. Teran, Appl. Phys. Rev. 2, 041301 (2015) Google Scholar
  11. 11.
    Z. Shateradadi, G. Nabiyouni, M. Soleymani, Prog. Biophys. Mol. Biol. 133, 9 (2018) Google Scholar
  12. 12.
    P. Wust, U. Gneveckow, M. Johannsen, D. Böhmer, T. Henkel, F. Kahmann, J. Sehouli, R. Felix, J. Ricke, A. Jordan, Int. J. Hypertermia 22, 673 (2006) Google Scholar
  13. 13.
    S. Dutz, R. Hergt, J. Murbe, R. Muller, M. Zeisberger, W. Andra, J. Topfer, M. Bellemann, J. Magn. Magn. Mater. 308, 305 (2007) Google Scholar
  14. 14.
    E. Vedre, G. Landi, J. Gomes, M. Sousa, A. Bakuris, J. Appl. Phys. 111, 123902 (2012) Google Scholar
  15. 15.
    E. Alison, E. Deatsch, A. Benjamin, J. Magn. Magn. Mater. 354, 163 (2014) Google Scholar
  16. 16.
    G. Landi, Phys. Rev. B 89, 014403 (2014) Google Scholar
  17. 17.
    H. Ghayour, M. Abdellahi, M. Nejad, A. Khandan, S. Saber-Samandari, J. Aust. Caram. Soc. 54, 223 (2018) Google Scholar
  18. 18.
    R. Massart, IEEE Trans. Magn. 17, 1247 (1981) Google Scholar
  19. 19.
    P. Guardia, B. Batlle-Brudal, A. Roca, O. Iglesias, M. Morales, C. Serna, A. Labarta, X. Batlle, J. Magn. Magn. Mater. 316, 756 (2007) Google Scholar
  20. 20.
    T. Sugimoto, E. Matijevic, J. Colloid Interface Sci. 74, 277 (1980) Google Scholar
  21. 21.
    N. Pezer, F. Bartolome, L. Garcia, J. Bartolome, M. Morales, C. Serna, A. Labarta, X. Battle, Appl. Phys. Lett. 94, 093108 (2009) Google Scholar
  22. 22.
    B. Mehdaoui, R.P. Tan, A. Meffre, J. Carrey, S. Lachaize, B. Chaudret, M. Respaud, Phys. Rev. B 87, 174419 (2013) Google Scholar
  23. 23.
    C. Dennis, A. Jackson, J. Borchers, R. Ivkov, A. Foreman, J. Lau, E. Goernitz, C. Gruettner, J. Appl. Phys. 103, 07A319 (2008) Google Scholar
  24. 24.
    C. Haase, U. Nowak, Phys. Rev. B 85, 045435 (2012) Google Scholar
  25. 25.
    A. Urtizberea, E. Natividad, A. Arizaga, M. Castro, A. Mediano, J. Phys. Chem. C 114, 491 (2010) Google Scholar
  26. 26.
    D. Serantes, D. Baldomir, C. Martinez-Boubeta, K. Simeonidis, M. Angelakeris, E. Natividad, M. Castro, A. Mediano, D.-X. Chen, A. Sanchez, L. Balcells, B. Martínez, J. Appl. Phys. 108, 073918 (2010) Google Scholar
  27. 27.
    K.R. Bhayani, S. Arora, R. Rajagopal, H. Mamgain, R. Kaul-Ghanekar, D.C. Kundaliya, S.D. Kulkarni, R. Pasricha, S.D. Dhole, S.B. Ogale, K.M. Paknikar, S.N. Kale, Nanotechnology 18, 345101 (2007) Google Scholar
  28. 28.
    R.A.K. Pradhan, R. Bah, R.B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, R.R. Rakhimov, J. Appl. Phys. 103, 07F704 (2008) Google Scholar
  29. 29.
    R.Y. Hong, J.H. Li, J.M. Qu, L.L. Chen, H.Z. Li, Chem. Eng. J. 150, 572 (2009) Google Scholar
  30. 30.
    R. Rajagopal, J. Mona, S.N. Kale, T. Bala, R. Pasricha, P. Poddar, M. Sastry, B.L.V. Prasad, D.C. Kundaliya, S.B. Ogale, Appl. Phys. Lett. 89, 023107 (2006) Google Scholar
  31. 31.
    S. Jadhav, D. Nikam, V.M. Khot, N. Thorat, M. Phadatare, R.S. Ningthoujam, A.B. Salunkhe, S.H. Pawar, New J. Chem. 37, 3121 (2017) Google Scholar
  32. 32.
    P. Žvátora, M. Veverka, P. Veverka, K. Knížek, K. Závěta, E. Pollert, V. Král, G. Goglio, E. Duguet, O. Kaman, J. Solid State Chem. 204, 373 (2013) Google Scholar
  33. 33.
    R. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002) Google Scholar
  34. 34.
    R. Hergt, W. Andra, C. d’Ambly, I. Hilger, W. Kaiser, U. Richter, H. Schmidt, IEEE Trans. Magn. 34, 3745 (1998) Google Scholar
  35. 35.
    J. Carrey, B. Mehaoui, M. Respaud, J. Appl. Phys. 109, 083921 (2011) Google Scholar
  36. 36.
    A. Vedre, G. Landi, M. Carriao, A. Dummond, J. Gomes, E. Vieira, M. Sousa, A. Drummond, AIP Adv. 2, 032120 (2012) Google Scholar
  37. 37.
    S. Ruta, R. Chantrell, O. Hovorka, Sci. Rep. 5, 9090 (2015) Google Scholar
  38. 38.
    L. Branquinho, M. Carriao, A. Costa, N. Zufelato, M. Sousa, R. Miotto, R. Ivkov, A. Bakuzis, Sci. Rep. 3, 2887 (2013) Google Scholar
  39. 39.
    E. de Biasi, C. Ramos, R. Zyster, H. Romero, Phys. Rev. B 65, 144416 (2002) Google Scholar
  40. 40.
    M. Vasilakaki, C. Binns, K. Trohidou, Nanoscale 7, 7735 (2002) Google Scholar
  41. 41.
    C. Berry, J. Mater. Chem. 15, 543 (2005) Google Scholar
  42. 42.
    D. Patel, Y. Chang, G. Lee, Curr. Appl. Phys. 9, S23 (2009) Google Scholar
  43. 43.
    S. Lee, J. Jeong, S. Shin, J. Kim, J. Magn. Magn. Mater. 282, 147 (2004) Google Scholar
  44. 44.
    N. Brusentsov, V. Kuznetsov, T. Brusentsova, T. Gendler, A. Navakova, E. Volter, E. Haliulina, M. Danilkin, J. Magn. Magn. Mater. 272–276, 2350 (2004) Google Scholar
  45. 45.
    A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Phys. Stat. Solids B 255, 1700587 (2018) Google Scholar
  46. 46.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D 36, R167 (2003) Google Scholar
  47. 47.
    K. Parekh, R.V. Upadhyay, R.V. Mehta, D. Srinivas, J. Appl. Phys. 88, 2799 (2000) Google Scholar
  48. 48.
    R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Physica B 363, 225 (2005) Google Scholar
  49. 49.
    R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, J. Magn. Magn. Mater. 298, 83 (2006) Google Scholar
  50. 50.
    G.V. Duong, R. Sato Turtelli, W.C. Nunes, E. Schafler, N. Hanh, R. Groessinger, M. Knobel, J. Non-Cryst. Solids 353, 805 (2007) Google Scholar
  51. 51.
    G.V. Duong, R. Sato Turtelli, N. Hanh, D.V. Linh, M. Reissner, H. Michor, J. Fidler, G. Wiesinger, R. Groessinger, J. Magn. Magn. Mater. 307, 313 (2006) Google Scholar
  52. 52.
    A. Franco Jr. de Silva, F.C. de Silva, J. Appl. Phys. 113, 17B513 (2013) Google Scholar
  53. 53.
    E. Girgis, M.M.S. Wahsh, A.G.M. Othman, L. Bandhu, K.V. Rao, Nanosc. Res. Lett. 6, 460 (2011) Google Scholar
  54. 54.
    S. Singhal, T. Namgyal, S. Bansal, K. Chandra, J. Electromagn. Anal. Appl. 2, 376 (2010) Google Scholar
  55. 55.
    G. Kozlowski, Magnetic Nanoparticles in Hyperthermia Treatment, Wright State University, CORE Scholar, Special Session 5: Carbon and Oxide Based Nanostructured Materials, 2012 Google Scholar
  56. 56.
    M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, J. Alloys Comp. 486, 325 (2009) Google Scholar
  57. 57.
    S. Singh, M. Singh, N.K. Ralhan, R.K. Kotnala, K.C. Verma, Adv. Mat. Lett. 3, 504 (2012) Google Scholar
  58. 58.
    M. Rahimi, P. Kameli, M. Ranjbar, H. Hajihashemi, H. Salamati, J. Mater. Sci. 48, 2969 (2013) Google Scholar
  59. 59.
    V. Corral-Flores, D. Bueno-Baqúes, F. Paraguay-Delgado, C.E. Botez, R. Ibarra-Gómez, R. Ziolo, Phys. Stat. Solids A 204, 1742 (2007) Google Scholar
  60. 60.
    T. Anjaneyulu, A.T. Raghavender, K.V. Kumar, P.N. Murthy, K. Narendra, Ind. J. Res. 2, 310 (2013) Google Scholar
  61. 61.
    Z. Beji, A. Hanini, L.S. Smiri, J. Gavard, K. Kacem, F. Villain, J.-M. Greneche, F. Chau, S. Ammar, Chem. Mater. 22, 5420 (2010) Google Scholar
  62. 62.
    R. Corado, A. Espinosa, L. Lartigue, M. Tharaud, S. Chat, T. Pellegrino, Ch. Menager, Fl. Gazeau, Cl. Wilhelm, Biomaterials 35, 6400 (2014) Google Scholar
  63. 63.
    V. Khot, A. Salunkhe, N. Thorat, M. Phadatare, S. Pawar, J. Magn. Magn. Mater. 332, 48 (2013) Google Scholar
  64. 64.
    R. Hergt, S. Dutz, R. Mueller, M. Ziesberger, J. Phys.: Condens. Matter 18, S2919 (2006) Google Scholar
  65. 65.
    A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, R. Felix, J. Magn. Magn. Mater. 201, 413 (1999) Google Scholar
  66. 66.
    M. Gonzalez-Fernandes, T. Torres, M. Andres-Verges, R. Costo, P. de la Presa, C. Sarna, M. Morrales, C. Marquina, M. Ibarra, G. Goya, J. Sol. State Chem. 182, 2779 (2009) Google Scholar
  67. 67.
    A. Aqil, S. Vasseur, E. Duguet, C. Passirani, J. Benoit, R. Jerome, C. Jerome, J. Mater. Chem. 18, 3352 (2008) Google Scholar
  68. 68.
    A.T. Apsotolov, I.N. Apostolova, J.M. Wesselinowa, Eur. Phys. J. B 86, 483 (2013) Google Scholar
  69. 69.
    G. Glockl, R. Nergt, M. Zeisberger, S. Dutz, S. Nagel, W. Weitschies, J. Phys.: Condens. Matter 18, S2935 (2006) Google Scholar
  70. 70.
    J. Fortin, C. Wilhelm, J. Servias, C. Menager, J. Bacri, F. Gazeau, J. Am. Chem. Soc. 129, 2628 (2007) Google Scholar
  71. 71.
    A. van Groenou, P. Bougers, A. Stuyts, Mater. Sci. Eng. 3, 317 (1968/1969) Google Scholar
  72. 72.
    J. Slama, A. Grukova, M. Usakova, E. Usak, J. Subrt, J. Lucas, J. Electr. Eng. 57, 159 (2006) Google Scholar
  73. 73.
    M.A. Gilleo, J. Phys. Chem. Solids 13, 33 (1960) Google Scholar
  74. 74.
    I. Nowik, J. Appl. Phys. 40, 872 (1969) Google Scholar
  75. 75.
    J.M. Wesselinowa, I.N. Apostolova, J. Appl. Phys. 103, 073910 (2008) Google Scholar
  76. 76.
    K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, J. Magn. Magn. Mater. 308, 289 (2007) Google Scholar
  77. 77.
    C. Caizer, Nanoparticle Size Effect on Some Magnetic Properties, in Handbook of Nanoparticles (Springer, 2015), Chap. XIX Google Scholar
  78. 78.
    F. Lui, T. Li, A. Zheng, Phys. Rev. Lett. A 323, 305 (2004) Google Scholar
  79. 79.
    N. Gautani, G. Thirupathi, R. Singh, AIP Conf. Proc. 1731, 050099 (2016) Google Scholar
  80. 80.
    S. Noor, R. Islam, S.S. Sikder, M.A. Hakim, S.M. Hoque, S. Rehaman, M.O. Rehaman, J. Mater. Sci. Eng. A 1, 1000 (2011) Google Scholar
  81. 81.
    Sh. Auhfer, D.P. Paul, Md.A. Hakim, Sh. Akhfer, Sh.M. Hoque, A.N. Das, J. Mod. Phys. 3, 398 (2012) Google Scholar
  82. 82.
    K. Lohar, S. Patange, S. Shirsath, V. Surywanshi, S. Gaikwad, S. Jadhav, N. Kuikarni, Int. J. Adv. Eng. Technol. 3, 354 (2012) Google Scholar
  83. 83.
    T. Tatarchuk, M. Uoudina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Nayar, M. Pacia, Nanoscale Res. Lett. 12, 141 (2017) Google Scholar
  84. 84.
    B. Godbolea, N. Baderab, S.B. Shrivastavac, D. Jaind , L. Chandrae, V. Ganesanf, Phys. Proc. 49, 58 (2013) Google Scholar
  85. 85.
    E. Stoner, E. Wohlfarth, Philos. Trans. R. Soc. London A 240, 559 (1947) Google Scholar
  86. 86.
    R. Hergt, S. Dutz, M. Roder, J. Phys.: Condens. Matter 20, 12 (2008) Google Scholar
  87. 87.
    A. Novakova, E. Smirnov, T. Gendler, J. Magn. Magn. Mater. 300, 354 (2006) Google Scholar
  88. 88.
    L. Berchmans, L. Selvan, R. Kumar, P. Augustin, J. Magn. Magn. Mater. 279, 103 (2004) Google Scholar
  89. 89.
    Ch. Kumar, F. Mahammad, Adv. Drug Del. Rev. 63, 789 (2011) Google Scholar
  90. 90.
    P. Guardia, R. Corato, L. Lartigie, C. Wilhelm, A. Espinosa, M. Garcia-Hernandes, F. Gazeau, L. Manna, T. Pellegrino, ACS Nano 6, 3080 (2012) Google Scholar
  91. 91.
    Yu. Tserkovnikov, Theor. Math. Phys. 7, 250 (1971) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Angl Apostolov
    • 1
    Email author
  • Iliana Apostolova
    • 2
  • Julia Wesselinowa
    • 3
  1. 1.University of Architecture, Civil Engineering and Geodesy, Faculty of Hydrotechnics, Department of Physics1046 SofiaBulgaria
  2. 2.University of Forestry, Faculty of Forest Industry1756 SofiaBulgaria
  3. 3.University of Sofia, Department of Physics, J. Bouchier Blvd. 51164 SofiaBulgaria

Personalised recommendations