Advertisement

Magnetic properties and temperature variation of spectra in the Hubbard model

  • Alexei ShermanEmail author
Regular Article
  • 40 Downloads

Abstract

In the two-dimensional fermionic Hubbard model, temperature and concentration dependencies of the uniform magnetic susceptibility and squared site spin, the variation of the double occupancy with the repulsion and the temperature dependence of the spin structure factor are calculated using the strong coupling diagram technique. In these calculations, a correction parameter is introduced into the irreducible vertex to fulfill the Mermin-Wagner theorem and to attain low temperatures. Satisfactory agreement of the obtained results with data of Monte Carlo simulations, numerical linked-cluster expansions and experiments in optical lattices lends support to the validity of such a correction. The ability to attain low temperatures allows us to investigate spectral functions in this region. At half-filling, for small and large Hubbard repulsions no qualitative changes are observed in comparison with somewhat higher temperatures reached in the previous work. However, on cooling, there appears a new feature for moderate repulsions – a narrow band emerges near the Fermi level, which produces a pronounced peak in the density of states. By its location and bandwidth, the feature is identified with the spin-polaron band.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    J.E. Hirsch, Phys. Rev. B 31, 4403 (1985) ADSCrossRefGoogle Scholar
  2. 2.
    A. Moreo, Phys. Rev. B 48, 3380 (1993) ADSCrossRefGoogle Scholar
  3. 3.
    C. Gröber, R. Eder, W. Hanke, Phys. Rev. B 62, 4336 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    H.Q. Lin, J.E. Hirsch, D.J. Scalapino, Phys. Rev. B 37, 7359 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    E. Dagotto, F. Ortolani, D. Scalapino, Phys. Rev. B 46, 3183 (1992) ADSCrossRefGoogle Scholar
  6. 6.
    M. Ebrahimkhas, Phys. Lett. A 375, 3223 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996) ADSCrossRefGoogle Scholar
  8. 8.
    T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    H. Park, K. Haule, G. Kotliar, Phys. Rev. Lett. 101, 186403 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    T. Sato, H. Tsunetsugu, Phys. Rev. B 94, 079907 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    S. Moukouri, M. Jarrell, Phys. Rev. Lett. 87, 167010 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    J. Merino, O. Gunnarsson, Phys. Rev. B 89, 245130 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    A. Toschi, A.A. Katanin, K. Held, Phys. Rev. B 75, 045118 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni, K. Held, N. Blümer, M. Aichhorn, A. Toschi, Phys. Rev. B 91, 125109 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    G. Rohringer, H. Hafermann, A. Toschi, A.A. Katanin, A.E. Antipov, M.I. Katsnelson, A.I. Lichtenstein, A.N. Rubtsov, K. Held, Rev. Mod. Phys. 90, 025003 (2018) ADSCrossRefGoogle Scholar
  16. 16.
    A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 77, 033101 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    H. Hafermann, G. Li, A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, H. Monien, Phys. Rev. Lett. 102, 206401 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    D. Sénéchal, D. Perez, M. Pioro-Ladrière, Phys. Rev. Lett. 84, 522 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    D. Sénéchal, A.-M.S. Tremblay, Phys. Rev. Lett. 92, 126401 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    M. Kohno, Phys. Rev. Lett. 108, 076401 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    M. Potthoff, M. Aichhorn, C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    E. Arrigoni, M. Aichhorn, M. Daghofer, W. Hanke, New J. Phys. 11, 055066 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    J.P.L. Faye, D. Sénéchal, Phys. Rev. B 95, 115127 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    R.O. Zaitsev, Sov. Phys. JETP 43, 574 (1976) ADSGoogle Scholar
  25. 25.
    Yu.A. Izyumov, Yu.N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems (Consultants Bureau, New York, 1988) Google Scholar
  26. 26.
    Yu.A. Izyumov, B.M. Letfulov, J. Phys.: Condens. Matter 1, 8905 (1990) ADSGoogle Scholar
  27. 27.
    S.G. Ovchinnikov, V.V. Valkov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College Press, London, 2004) Google Scholar
  28. 28.
    Y.M. Vilk, A.-M.S. Tremblay, J. Phys. I France 7, 1309 (1997) CrossRefGoogle Scholar
  29. 29.
    E. Khatami, M. Rigol, Phys. Rev. A 84, 053611 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    B. Tang, E. Khatami, M. Rigol, Comput. Phys. Commun. 184, 557 (2013) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    J. Jaklič, P. Prelovšek, Phys. Rev. B 49, 5065 (1994) ADSCrossRefGoogle Scholar
  32. 32.
    J. Bonča, P. Prelovšek, Phys. Rev. B 67, 085103 (2003) ADSCrossRefGoogle Scholar
  33. 33.
    M.I. Vladimir, V.A. Moskalenko, Theor. Math. Phys. 82, 301 (1990) CrossRefGoogle Scholar
  34. 34.
    W. Metzner, Phys. Rev. B 43, 8549 (1991) ADSCrossRefGoogle Scholar
  35. 35.
    S. Pairault, D. Sénéchal, A.-M.S. Tremblay, Eur. Phys. J.B 16, 85 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    A. Sherman, Phys. Rev. B 73, 155105 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    A. Sherman, Physica B 456, 35 (2015) ADSCrossRefGoogle Scholar
  38. 38.
    A. Sherman, J. Phys.: Condens. Matter 30, 195601 (2018) ADSGoogle Scholar
  39. 39.
    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966) ADSCrossRefGoogle Scholar
  40. 40.
    J.C. Slater, Phys. Rev. 82, 538 (1951) ADSCrossRefGoogle Scholar
  41. 41.
    S. Schmitt-Rink, C.M. Varma, A.E. Ruckenstein, Phys. Rev. Lett. 60, 2793 (1988) ADSCrossRefGoogle Scholar
  42. 42.
    A. Ramšak, P. Horsch, Phys. Rev. B 48, 10559 (1993) ADSCrossRefGoogle Scholar
  43. 43.
    A. Sherman, M. Schreiber, Phys. Rev. B 50, 12887 (1994) ADSCrossRefGoogle Scholar
  44. 44.
    J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963) ADSCrossRefGoogle Scholar
  45. 45.
    J. Hubbard, Proc. R. Soc. Lond. A 277, 237 (1964) ADSCrossRefGoogle Scholar
  46. 46.
    A. Sherman, Eur. Phys. J. B 89, 91 (2016) ADSCrossRefGoogle Scholar
  47. 47.
    A. Sherman, Eur. Phys. J. B 90, 120 (2017) ADSCrossRefGoogle Scholar
  48. 48.
    A. Sherman, M. Schreiber, Phys. Rev. B 76, 245112 (2007) ADSCrossRefGoogle Scholar
  49. 49.
    A. Sherman, M. Schreiber, Phys. Rev. B 77, 155117 (2008) ADSCrossRefGoogle Scholar
  50. 50.
    A.A. Katanin, A. Toschi, K. Held, Phys. Rev. B 80, 075104 (2009) ADSCrossRefGoogle Scholar
  51. 51.
    G. Rohringer, A. Toschi, Phys. Rev. B 94, 125144 (2016) ADSCrossRefGoogle Scholar
  52. 52.
    N.E. Bickers, S.R. White, Phys. Rev. B 43, 8044 (1991) ADSCrossRefGoogle Scholar
  53. 53.
    J.E. Hirsch, Phys. Rev. Lett. 51, 1900 (1983) ADSCrossRefGoogle Scholar
  54. 54.
    Y. Okabe, M. Kikuchi, J. Phys. Soc. Jpn. 57, 4351 (1988) ADSCrossRefGoogle Scholar
  55. 55.
    L. Gang, L. Hunpyo, H. Monien, Phys. Rev. B 78, 195105 (2008) CrossRefGoogle Scholar
  56. 56.
    E.G.C.P. van Loon, H. Hafermann, M. Katsnelson, Phys. Rev. B 97, 085125 (2018) ADSCrossRefGoogle Scholar
  57. 57.
    O.K. Kalashnikov, E.S. Fradkin, Phys. Stat. Solidi B 59, 9 (1973) ADSCrossRefGoogle Scholar
  58. 58.
    S.R. White, Phys. Rev. B 44, 4670 (1991) ADSCrossRefGoogle Scholar
  59. 59.
    A. Moreo, D.J. Scalapino, R.L. Sugar, S.R. White, N.E. Bickers, Phys. Rev. B 41, 2313 (1990) ADSCrossRefGoogle Scholar
  60. 60.
    J.P.F. LeBlanc et al., Phys. Rev X 5, 041041 (2015) Google Scholar
  61. 61.
    C.N. Varney, C.-R. Lee, Z.J. Bai, S. Chiesa, M. Jarrel, R.T. Scalettar, Phys. Rev. B 80, 075116 (2009) ADSCrossRefGoogle Scholar
  62. 62.
    J.H. Drewes, L.A. Miller, E. Cocchi, C.F. Chan, N. Wurz, M. Gall, D. Pertot, F. Brennecke, M. Köhl, Phys. Rev. Lett. 118, 170401 (2017) ADSCrossRefGoogle Scholar
  63. 63.
    T. Paiva, R. Scalettar, M. Randeria, N. Trivedi, Phys. Rev. Lett. 104, 066406 (2010) ADSCrossRefGoogle Scholar
  64. 64.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, in Numerical Recipes in Fortran (Cambridge University Press, Cambridge, 1995), Chap. 18 Google Scholar
  65. 65.
    M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996) ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    S. Habershon, B.J. Braams, D.E. Manolopoulos, J. Chem. Phys. 127, 174108 (2007) ADSCrossRefGoogle Scholar
  67. 67.
    F. Ronning, K.M. Shen, N.P. Armitage, A. Damascelli, D.H. Lu, Z.-X. Shen, L.L. Miller, C. Kim, Phys. Rev. B 71, 094518 (2005) ADSCrossRefGoogle Scholar
  68. 68.
    J. Graf, G.-H. Gweon, K. McElroy, S.Y. Zhou, C. Jozwiak, E. Rotenberg, A. Bill, T. Sasagawa, H. Eisaki, S. Uchida, H. Takagi, D.-H. Lee, A. Lanzara, Phys. Rev. Lett. 98, 067004 (2007) ADSCrossRefGoogle Scholar
  69. 69.
    T. Valla, T.E. Kidd, W.-G. Yin, G.D. Gu, P.D. Johnson, Z.-H. Pan, A.V. Fedorov, Phys. Rev. Lett. 98, 167003 (2007) ADSCrossRefGoogle Scholar
  70. 70.
    M. Balzer, B. Kyung, D. Sénéchal, A.-M.S. Tremblay, M. Potthoff, Europhys. Lett. 85, 17002 (2009) ADSCrossRefGoogle Scholar
  71. 71.
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993) Google Scholar
  72. 72.
    N. Bulut, D.J. Scalapino, S.R. White, Phys. Rev. Lett. 72, 705 (1994) ADSCrossRefGoogle Scholar
  73. 73.
    M.U. Luchini, D.M. Edwards, J. Low Temp. Phys. 99, 305 (1995) Google Scholar
  74. 74.
    B. Kyung, Phys. Rev. B 58, 16032 (1998) ADSCrossRefGoogle Scholar
  75. 75.
    Yu.A. Izyumov, Yu.N. Skryabin, Basic Models in the Quantum Theory of Magnetism (Institute of Metal Physics, Yekaterinburg, 2002) Google Scholar
  76. 76.
    A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Physics, University of Tartu, W. Ostwaldi Str 1TartuEstonia

Personalised recommendations