Advertisement

Directed continuous-time random walk with memory

  • Jarosław KlamutEmail author
  • Tomasz Gubiec
Open Access
Regular Article

Abstract

In this paper, we are addressing the old problem of long-term nonlinear autocorrelation function versus short-term linear autocorrelation function. As continuous-time random walk (CTRW) can describe almost all possible kinds of diffusion, it seems to be an excellent tool to use. To be more precise, for instance, CTRW can successfully describe the short-term negative autocorrelation of returns in high-frequency financial data (caused by the bid-ask bounce phenomena). We observe long-term autocorrelation of absolute values of returns. Can it also be described by the CTRW model? And maybe more importantly, to what extent can it be explained by the same phenomena? To refer to these questions, we propose a new directed CTRW model with memory. The canonical CTRW trajectory consists of spatial jumps preceded by waiting times. In directed CTRW, we consider the case with positive spatial jumps only. We take into account the memory in the model as each spatial jump depends on the previous one. This model, based on simple assumptions, allowed us to obtain the general formula covering most popular types of nonlinear autocorrelation functions.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965) ADSCrossRefGoogle Scholar
  2. 2.
    R. Kutner, J. Masoliver, Eur. Phys. J. B 90, 50 (2017) ADSCrossRefGoogle Scholar
  3. 3.
    H. Scher, E.W. Montroll, Phys. Rev. B 12, 2455 (1975) ADSCrossRefGoogle Scholar
  4. 4.
    G. Pfister, H. Scher, Adv. Phys. 27, 747 (1978) ADSCrossRefGoogle Scholar
  5. 5.
    E.W. Montroll, M.F. Schlesinger, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, edited by J. Lebowitz, E. Montroll (North-, Amsterdam, 1984), pp. 1–121 Google Scholar
  6. 6.
    G. Weiss, in Fractals in Science (Springer, Berlin, 1994), pp. 119–162 Google Scholar
  7. 7.
    J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000) Google Scholar
  9. 9.
    R. Hilfer, Physica A 329, 35 (2003) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Barkai, Y.C. Cheng, J. Chem. Phys. 118, 6167 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    C. Monthus, J.P. Bouchaud, J. Phys. A, Math. Gen. 29, 3847 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    W. Dieterich, P. Maass, Solid State Ion. 180, 446 (2009) CrossRefGoogle Scholar
  13. 13.
    N. Iyengar, C. Peng, R. Morin, A. Goldberger, L. Lipsitz, Am. J. Physiol. Regul. Integr. Comp. Physiol. 271, R1078 (1996) CrossRefGoogle Scholar
  14. 14.
    J. Nelson, Phys. Rev. B 59, 15374 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    M. Lomholt, K. Tal, R. Metzler, J. Klafter, Proc. Natl. Acad. Sci. 105, 11055 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    G. Margolin, B. Berkowitz, J. Phys. Chem. B 104, 3942 (2000) CrossRefGoogle Scholar
  17. 17.
    A. Helmstetter, D. Sornette, Phys. Rev. E 66, 061104 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    H. Scher, G. Margolin, R. Metzler, J. Klafter, B. Berkowitz, Geophys. Res. Lett. 29, 5 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    R. Hempelmann, in Anomalous Diffusion From Basics to Applications, edited by R. Kutner, A. Pȩkalski, K. Sznajd-Weron (Springer, Berlin, Heidelberg, 1999), pp. 247–252 Google Scholar
  20. 20.
    L. Hufnagel, D. Brockmann, T. Geisel, Nature 439, 462 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    E. Scalas, R. Gorenflo, F. Mainardi, Physica A 284, 376 (2000) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Physica A 287, 468 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    M. Raberto, E. Scalas, F. Mainardi, Physica A 314, 749 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    E. Scalas, R. Gorenflo, F. Mainardi, Phys. Rev. E 69, 011107 (2004) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    E. Scalas, Physica A 362, 225 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    R. Kutner, F. Świtała, Quant. Financ. 3, 201 (2003) CrossRefGoogle Scholar
  27. 27.
    J. Masoliver, M. Montero, G.H. Weiss, Phys. Rev. E 67, 021112 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    P. Repetowicz, P. Richmond, Physica A 344, 108 (2004). (Applications of Physics in Financial Analysis 4 (APFA4)) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Masoliver, M. Montero, J. Perelló, G.H. Weiss, J. Econ. Behav. Organ. 61, 577 (2006) CrossRefGoogle Scholar
  30. 30.
    J. Masoliver, M. Montero, J. Perello, G.H. Weiss, Physica A 379, 151 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    R. Kutner, Phys. A, Stat. Mech. Appl. 314, 786 (2002) CrossRefGoogle Scholar
  32. 32.
    E. Scalas, in The Complex Networks of Economic Interactions (Springer, Berlin, Heidelberg, 2006), pp. 3–16 Google Scholar
  33. 33.
    J. Perelló, J. Masoliver, A. Kasprzak, R. Kutner, Phys. Rev. E 78, 036108 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    T. Gubiec, R. Kutner, Eur. Phys. J. B 90, 228 (2017) ADSCrossRefGoogle Scholar
  35. 35.
    T. Gubiec, R. Kutner, Phys. Rev. E 82, 046119 (2010) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Kasprzak, R. Kutner, J. Perelló, J. Masoliver, Eur. Phys. J. B 76, 513 (2010) ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) ADSCrossRefGoogle Scholar
  38. 38.
    H. Scher, M.F. Shlesinger, J.T. Bendler, Phys. Today 44, 26 (1991) ADSCrossRefGoogle Scholar
  39. 39.
    J.W. Haus, K.W. Kehr, Phys. Rep. 150, 263 (1987) ADSCrossRefGoogle Scholar
  40. 40.
    K. Kehr, R. Kutner, K. Binder, Phys. Rev. B 23, 4931 (1981) ADSCrossRefGoogle Scholar
  41. 41.
    R. Kutner, J. Phys. C: Solid State Phys. 18, 6323 (1985) ADSCrossRefGoogle Scholar
  42. 42.
    T. Gubiec, R. Kutner, Acta Phys. Pol. A 117, 669 (2010) CrossRefGoogle Scholar
  43. 43.
    M. Montero, J. Masoliver, Phys. Rev. E 76, 061115 (2007) ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Montero Torralbo, Phys. Rev. E 84, 051139 (2011) ADSCrossRefGoogle Scholar
  45. 45.
    V. Tejedor, R. Metzler, J. Phys. A: Math. Theor. 43, 082002 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    M. Magdziarz, R. Metzler, W. Szczotka, P. Zebrowski, Phys. Rev. E 85, 051103 (2012) ADSCrossRefGoogle Scholar
  47. 47.
    A.V. Chechkin, M. Hofmann, I.M. Sokolov, Phys. Rev. E 80, 031112 (2009) ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    J.H. Jeon, N. Leijnse, L.B. Oddershede, R. Metzler, New J. Phys. 15, 045011 (2013) ADSCrossRefGoogle Scholar
  49. 49.
    R. Tsay, Analysis of Financial Time Series, 2nd edn., Wiley Series in Probability and Statistics (Wiley-, Hoboken, NJ, 2005) Google Scholar
  50. 50.
    R. Cont, Quant. Financ. 1, 223 (2001) CrossRefGoogle Scholar
  51. 51.
    R. Cont, in Fractals in Engineering, edited by J. Lévy-Véhel, E. Lutton (Springer, London, 2005), pp. 159–179 Google Scholar
  52. 52.
    J.K.E. Tunaley, Phys. Rev. Lett. 33, 1037 (1974) ADSCrossRefGoogle Scholar
  53. 53.
    J.K.E. Tunaley, J. Stat. Phys. 11, 397 (1974) ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    T. Gubiec, M. Wiliński, Physica A 432, 216 (2015) ADSCrossRefGoogle Scholar
  55. 55.
    J. Hasbrouck, Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities Trading (Oxford University Press, Oxford, 2007) Google Scholar
  56. 56.
    M.M. Dacorogna, R. Gencay, U. Muller, R.B. Olsen, O.V. Pictet, An Introduction to High Frequency Finance (Academic Press, New York, 2001) Google Scholar

Copyright information

© The Author(s) 2019

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of Experimental Physics, Faculty of Physics, University of WarsawWarsawPoland
  2. 2.Center for Polymer Studies and Department of Physics, Boston UniversityBostonUSA

Personalised recommendations