Advertisement

Probing the local response of a two-dimensional liquid foam

  • Leevi ViitanenEmail author
  • Juha Koivisto
  • Antti Puisto
  • Mikko Alava
  • Stephane Santucci
Open Access
Regular Article
  • 137 Downloads
Part of the following topical collections:
  1. Topical issue: Complex Systems Science meets Matter and Materials

Abstract

Aqueous foams are viscoelastic yield stress fluids. Due to their complex rheology, foam flow around an obstacle embedded in a 2D Hele-Shaw cell has been widely studied. Typically, in such geometry in the moving flow reference frame the flow field of viscoelastic fluids exhibit a quadrupolar structure characterized by a negative wake. Here, we introduce a measuring geometry, new in this context, whereby instead of flowing the foam around the obstacle, we move the obstacle as an intruder inside the foam. The proposed setup makes it possible to independently control the driving velocity and the liquid foam properties, such as the gas fraction and polydispersity. We show that the liquid foam velocity field around the intruder is similar to the one observed in viscoelastic fluids, in particular the emergence of a negative wake, e.g. a velocity overshoot downstream side of the obstacle. However, surprisingly, the intensity of this velocity overshoot decreases with the number of intruder passes, probably related to the evolution of the local disordered structure of the liquid foam.

Graphical abstract

Notes

Acknowledgments

Open access funding provided by Aalto University.

Supplementary material

10051_2019_90402_MOESM1_ESM.mp4 (166.9 mb)
MP4 file

References

  1. 1.
    F. Bolton, D. Weaire, Phys. Rev. Lett. 65, 3449 (1990) ADSCrossRefGoogle Scholar
  2. 2.
    A. Saint-Jalmes, D. Durian, J. Rheol. 43, 1411 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    G. Katgert, B.P. Tighe, M. van Hecke, Soft Matter 9, 9739 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    K. Khakalo, K. Baumgarten, B.P. Tighe, A. Puisto, arXiv:1706.03932 (2017)
  5. 5.
    M. Van Hecke, J. Phys.: Condens. Matter 22, 033101 (2009) ADSGoogle Scholar
  6. 6.
    S. Cohen-Addad, R. Höhler, O. Pitois, Annu. Rev. Fluid Mech. 45, 241 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    K.A. Brakke, Exp. Math. 1, 141 (1992) MathSciNetCrossRefGoogle Scholar
  8. 8.
    D.L. Weaire, S. Hutzler, The physics of foams (Oxford University Press, 2001) Google Scholar
  9. 9.
    R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005) ADSGoogle Scholar
  10. 10.
    J. Boschan, D. Vågberg, E. Somfai, B.P. Tighe, Soft Matter 12, 5450 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    V. Bulatov, A. Argon, Model. Simul. Mater. Sci. Eng. 2, 167 (1994) ADSCrossRefGoogle Scholar
  12. 12.
    M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    A. Gopal, D. Durian, J. Colloid Interface Sci. 213, 169 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    D. Weaire, Curr. Opin. Colloid Interface Sci. 13, 171 (2008) CrossRefGoogle Scholar
  15. 15.
    H. Princen, in Encyclopedic Handbook of Emulsion Technology, edited by J. Sjöblom (Marcel Dekker Inc., 2001), p. 243 Google Scholar
  16. 16.
    P. Marmottant, F. Graner, Soft Matter 9, 9602 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    B. Dollet, F. Elias, C. Quilliet, A. Huillier, M. Aubouy, F. Graner, Colloids Surf. A 263, 101 (2005) CrossRefGoogle Scholar
  18. 18.
    B. Dollet, F. Elias, C. Quilliet, C. Raufaste, M. Aubouy, F. Graner, Phys. Rev. E 71, 031403 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    B. Dollet, F. Graner, J. Fluid Mech. 585, 181 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    C. Raufaste, B. Dollet, S. Cox, Y. Jiang, F. Graner, Eur. Phys. J. E 23, 217 (2007) CrossRefGoogle Scholar
  21. 21.
    B. Dollet, M. Durth, F. Graner, Phys. Rev. E 73, 061404 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    O. Hassager, Nature 279, 402 (1979) ADSCrossRefGoogle Scholar
  23. 23.
    T. Chevalier, J. Koivisto, N. Shmakova, M. Alava, A. Puisto, C. Raufaste, S. Santucci, J. Phys.: Conf. Ser. 925, 012025 (2017) Google Scholar
  24. 24.
    I. Cheddadi, P. Saramito, B. Dollet, C. Raufaste, F. Graner, Eur. Phys. J. E 34, 1 (2011) CrossRefGoogle Scholar
  25. 25.
    I.T. Davies, S.J. Cox, Colloids Surf. A 344, 8 (2009) CrossRefGoogle Scholar
  26. 26.
    A. Wyn, I.T. Davies, S.J. Cox, Eur. Phys. J. E 26, 81 (2008) CrossRefGoogle Scholar
  27. 27.
    A. Saint-Jalmes, Soft Matter 2, 836 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    J.A. Glazier, S.P. Gross, J. Stavans, Phys. Rev. A 36, 306 (1987) ADSCrossRefGoogle Scholar
  29. 29.
    W. Thielicke, E. Stamhuis, J. Open Res. Softw. 2, 30 (2014) CrossRefGoogle Scholar
  30. 30.
    C. Quilliet, S.A. Talebi, D. Rabaud, J. Käfer, S. Cox, F. Graner, Phil. Mag. Lett. 88, 651 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    F. Mou čka, I. Nezbeda, Phys. Rev. Lett. 94, 040601 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    O. Ramos, E. Altshuler, K.J. Måløy, Phys. Rev. Lett. 102, 078701 (2009) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019. This article is published with open access at Springerlink.com 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Leevi Viitanen
    • 1
    Email author
  • Juha Koivisto
    • 1
  • Antti Puisto
    • 1
  • Mikko Alava
    • 1
  • Stephane Santucci
    • 2
    • 3
  1. 1.Aalto University, Department of Applied PhysicsAaltoFinland
  2. 2.Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de PhysiqueLyonFrance
  3. 3.Lavrentyev Institute of HydrodynamicsNovosibirskRussia

Personalised recommendations