Advertisement

Electronic and phonon structure of nickel hydroxide: first-principles calculation study

  • Haoran Wang
  • Changjiang SongEmail author
Regular Article
  • 50 Downloads

Abstract

We carried out a complete study (magnetic, electronic, lattice dynamic, and point defects) of the β-nickel hydroxide (β-Ni(OH)2) from first-principles calculations based on density functional theory. It is found that both of the magnetic ground state and band structure of β-Ni(OH)2 are strongly dependent on the correlation effect of Ni d-electrons. Experimental founded antiferromagnetic ground state with spin coupling along c direction has been confirmed by DFT+U method, and the predicated band structure shows a direct band gap about 3.5 eV with the highest occupied valence and lowest occupied bands mainly composed by O p-electron and Ni d-electron. Negative longitude acoustic phonon frequency around K point has been found, which is originated from the weak OH bond. High frequency localized vibration of hydrogen atom makes it easy to break away, and so form a vacancy, in agreement with the prediction that H+ vacancy has the lowest formation energy.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    A. Szytula, A. Murasik, M. Balanda, Phys. Stat. Solidi B 43, 125 (1971) ADSCrossRefGoogle Scholar
  2. 2.
    T.A. Edison, Google Patents, 1904 Google Scholar
  3. 3.
    E. Jungner, German Patent 163, 170 (1901) Google Scholar
  4. 4.
    F. Cheng, J. Liang, Z. Tao, J. Chen, Adv. Mater. 23, 1695 (2011) CrossRefGoogle Scholar
  5. 5.
    D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. Royal Soc. A: Math. Phys. Eng. Sci. 471, 20140792 (2015) CrossRefGoogle Scholar
  6. 6.
    M. Gong, H. Dai, Nano Res. 8, 23 (2015) CrossRefGoogle Scholar
  7. 7.
    J. Ran, J. Yu, M. Jaroniec, Green Chem. 13, 2708 (2011) CrossRefGoogle Scholar
  8. 8.
    J. Yu, Y. Hai, B. Cheng, J. Phys. Chem. C 115, 4953 (2011) CrossRefGoogle Scholar
  9. 9.
    S.I. Cordoba-Torresi, C. Gabrielli, A. Hugot-Le Goff, R. Torresi, J. Electrochem. Soc. 138, 1548 (1991) CrossRefGoogle Scholar
  10. 10.
    P.K. Sharma, M.C.A. Fantini, A. Gorenstein, Solid State Ionics 113–115, 457 (1998) CrossRefGoogle Scholar
  11. 11.
    B. Cheng, Y. Le, W. Cai, J. Yu, J. Hazard. Mater. 185, 889 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    M. Aghazadeh, M. Ghaemi, B. Sabour, S. Dalvand, J. Solid State Electrochem. 18, 1569 (2014) CrossRefGoogle Scholar
  13. 13.
    J.-C. Chen, C.-T. Hsu, C.-C. Hu, J. Power Sources 253, 205 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    H. Cheng, A.D. Su, S. Li, S.T. Nguyen, L. Lu, C.Y.H. Lim, H.M. Duong, Chem. Phys. Lett. 601, 168 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    X. Ma, J. Liu, C. Liang, X. Gong, R. Che, J. Mater. Chem. A 2, 12692 (2014) CrossRefGoogle Scholar
  16. 16.
    H. Manzano, A.N. Enyashin, J.S. Dolado, A. Ayuela, J. Frenzel, G. Seifert, Adv. Mater. 24, 3239 (2012) CrossRefGoogle Scholar
  17. 17.
    B. Ni, H. Liu, P.-P. Wang, J. He, X. Wang, Nat. Commun. 6, 8756 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    L. Zhuo, J. Ge, L. Cao, B. Tang, Cryst. Growth Des. 9, 1 (2009) CrossRefGoogle Scholar
  19. 19.
    H. Bode, K. Dehmelt, J. Witte, Electrochim. Acta 11, 1079 (1966) CrossRefGoogle Scholar
  20. 20.
    R. Barnard, C.F. Randell, F.L. Tye, J. Appl. Electrochem. 10, 109 (1980) CrossRefGoogle Scholar
  21. 21.
    M. Dixit, P.V. Kamath, J. Gopalakrishnan, J. Electrochem. Soc. 146, 79 (1999) CrossRefGoogle Scholar
  22. 22.
    F.P. Kober, J. Electrochem. Soc. 112, 1064 (1965) CrossRefGoogle Scholar
  23. 23.
    F.P. Kober, J. Electrochem. Soc. 114, 215 (1967) CrossRefGoogle Scholar
  24. 24.
    K. Pandya, W. O’grady, D. Corrigan, J. McBreen, R. Hoffman, J. Phys. Chem. 94, 21 (1990) CrossRefGoogle Scholar
  25. 25.
    C. Johnston, P.R. Graves, Appl. Spectr. 44, 105 (1990) ADSCrossRefGoogle Scholar
  26. 26.
    M.C. Bernard, M. Keddam, H. Takenouti, P. Bernard, S. Sényarich, J. Electrochem. Soc. 143, 2447 (1996) CrossRefGoogle Scholar
  27. 27.
    S. Deabate, F. Fourgeot, F. Henn, J. Power Sources 87, 125 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    C. Murli, S.M. Sharma, S.K. Kulshreshtha, S.K. Sikka, Physica B 307, 111 (2001) ADSCrossRefGoogle Scholar
  29. 29.
    J.L. Bantignies, S. Deabate, A. Righi, S. Rols, P. Hermet, J.L. Sauvajol, F. Henn, J. Phys. Chem. C 112, 2193 (2008) CrossRefGoogle Scholar
  30. 30.
    P. Hermet, L. Gourrier, J.L. Bantignies, D. Ravot, T. Michel, S. Deabate, P. Boulet, F. Henn, Phys. Rev. B 84, 235211 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources 188, 338 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    M.K. Carpenter, D.A. Corrigan, J. Electrochem. Soc. 136, 1022 (1989) CrossRefGoogle Scholar
  33. 33.
    A.J. Tkalych, K. Yu, E.A. Carter, J. Phys. Chem. C 119, 24315 (2015) CrossRefGoogle Scholar
  34. 34.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  35. 35.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  36. 36.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) ADSCrossRefGoogle Scholar
  37. 37.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  38. 38.
    J. Klimeš, D.R. Bowler, A. Michaelides, Phys. Rev. B 83, 195131 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    K. Jiří, R.B. David, M. Angelos, J. Phys.: Condens. Matter 22, 022201 (2010) Google Scholar
  40. 40.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998) ADSCrossRefGoogle Scholar
  41. 41.
    A.D. Doyle, M. Bajdich, A. Vojvodic, Catal. Lett. 147, 1533 (2017) CrossRefGoogle Scholar
  42. 42.
    A.J. Tkalych, H.L. Zhuang, E.A. Carter, ACS Catal. 7, 5329 (2017) CrossRefGoogle Scholar
  43. 43.
    A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015) CrossRefGoogle Scholar
  44. 44.
    T. Enoki, I. Tsujikawa, J. Phys. Soc. Jpn. 45, 1515 (1978) ADSCrossRefGoogle Scholar
  45. 45.
    C. Marini et al., High Pressure Res. 37, 1 (2017) ADSCrossRefGoogle Scholar
  46. 46.
    A. Audemer, A. Delahaye, R. Farhi, N. Sac-Epée, J.-M. Tarascon, J. Electrochem. Soc. 144, 2614 (1997) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key laboratory of Advanced Special Steel, Shanghai UniversityShanghaiP.R. China
  2. 2.Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai UniversityShanghaiP.R. China
  3. 3.School of Material Science and Engineering, Shanghai UniversityShanghaiP.R. China

Personalised recommendations