Advertisement

Electronic properties of single and double napped carbon nanocones

  • Felipe Azevedo GomesEmail author
  • Valdir Barbosa Bezerra
  • Jonas Romero Fonseca de Lima
  • Fernando Jorge Sampaio Moraes
Regular Article
  • 34 Downloads

Abstract

In this paper, we study the electronic properties of carbon nanocones with one and two nappes, with pentagonal and heptagonal defects in their lattices. We use the continuum model, which is based on a Dirac-like Hamiltonian with the topological defects described by localized non-Abelian gauge field fluxes. We develop a geometrical approach that can describe the two nappes of the double cone surface simultaneously, by extending the radial coordinate to the complete set of real numbers. We show that, for some combinations of different nanocones, forming the double conical surface, the local density of states near the apex of the cone does not vanish at the Fermi energy and presents a strong dependence on the angular momentum. We also obtain the energy spectrum for finite-sized nanocones and verify that it depends on the choice of topological defect on the surface, which suggests that a double nanocone can be used to control the electronic transport in carbon-based electronic devices. Furthermore, we study the effects of an uniform magnetic field parallel to the cone axis on its electronic states. The Landau Levels are analytically obtained and a detailed analysis of the energy spectrum is done considering combinations of the relevant quantum numbers. We find highly degenerated energy modes, as in the planar case, and apical states dependent on the geometric parameters of the surface.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    N. Tagmatarchis, Advances in Carbon Nanomaterials (Pan Stanford, New York, 2012) Google Scholar
  2. 2.
    H. Kroto, J. Heath, S. Obrien, R. Curl, R. Smalley, Nature 318, 162 (1985) CrossRefGoogle Scholar
  3. 3.
    S. Iijima, Nature 354, 56 (1991) CrossRefGoogle Scholar
  4. 4.
    M. Ge, K. Sattler, Chem. Phys. Lett. 220, 192 (1994) CrossRefGoogle Scholar
  5. 5.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) CrossRefGoogle Scholar
  6. 6.
    X. Xie, L. Ju, X. Feng, Y. Sun, R. Zhou, K. Liu, S. Fan, Q. Li, K. Jiang, Nano Lett. 9, 2565 (2009) CrossRefGoogle Scholar
  7. 7.
    D. Ugarte, Nature 359, 707 (1992) CrossRefGoogle Scholar
  8. 8.
    J. Liu, H. Dai, J.H. Hafner, D.T. Colbert, R.E. Smalley, S.J. Tans, C. Dekker, Nature 385, 780 (1997) CrossRefGoogle Scholar
  9. 9.
    S. Iijima, T. Ichihashi, Y. Ando, Nature 356, 776 (1992) CrossRefGoogle Scholar
  10. 10.
    S. Iijima, T. Ichihashi, Nature 363, 603 (1993) CrossRefGoogle Scholar
  11. 11.
    M. Ge, K. Sattler, Appl. Phys. Lett. 64, 710 (1994) CrossRefGoogle Scholar
  12. 12.
    A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen, Nature 388, 451 (1997) CrossRefGoogle Scholar
  13. 13.
    D.L. Carroll, Redlich, P.M. Ajayan, J.C. Charlier, X. Blase, A. De Vita, R. Car, Phys. Rev. Lett. 78, 2811 (1997) CrossRefGoogle Scholar
  14. 14.
    K. Kobayashi, Phys. Rev. B 61, 8496 (2000) CrossRefGoogle Scholar
  15. 15.
    J.-C. Charlier, G.-M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001) CrossRefGoogle Scholar
  16. 16.
    R. Tamura, M. Tsukada, Phys. Rev. B 49, 7697 (1994) CrossRefGoogle Scholar
  17. 17.
    R. Tamura, M. Tsukada, Phys. Rev. B 52, 6015 (1995) CrossRefGoogle Scholar
  18. 18.
    V. Meunier, M.B. Nardelli, C. Roland, J. Bernholc, Phys. Rev. B 64, 195419 (2001) CrossRefGoogle Scholar
  19. 19.
    P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 85, 5190 (2000) CrossRefGoogle Scholar
  20. 20.
    P.E. Lammert, V.H. Crespi, Phys. Rev. B 69, 035406 (2004) CrossRefGoogle Scholar
  21. 21.
    O.A. Shenderova, B.L. Lawson, D. Areshkin, D.W. Brenner, Nanotechnology 12, 191 (2001) CrossRefGoogle Scholar
  22. 22.
    C. Ming, Z.-Z. Lin, J. Zhuang, X.-J. Ning, Appl. Phys. Lett. 100, 063119 (2012) CrossRefGoogle Scholar
  23. 23.
    N. Yang, G. Zhang, B. Li, Appl. Phys. Lett. 93, 243111 (2008) CrossRefGoogle Scholar
  24. 24.
    O.O. Adisa, B.J. Cox, J.M. Hill, J. Phys. Chem. C 115, 24528 (2011) CrossRefGoogle Scholar
  25. 25.
    K. Ajima, T. Murakami, Y. Mizoguchi, K. Tsuchida, T. Ichihashi, S. Iijima, M. Yudasaka, ACS Nano 2, 2057 (2008) CrossRefGoogle Scholar
  26. 26.
    K. Kowalski, J. Rembieliński, Ann. Phys. 329, 146 (2013) CrossRefGoogle Scholar
  27. 27.
    F.A. Gomes, E.O. Silva, J.R.F. Lima, C. Filgueiras, F. Moraes, J. Phys. A: Math. Theor. 50, 065302 (2017) CrossRefGoogle Scholar
  28. 28.
    M.D. Lopes, S. Azevedo, F. Moraes, M. Machado, Eur. Phys. J. B 88, 10 (2015) CrossRefGoogle Scholar
  29. 29.
    J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett. 69, 172 (1992) CrossRefGoogle Scholar
  30. 30.
    J.R. Lima, J. Brandão, M.M. Cunha, F. Moraes, Eur. Phys. J. D 68, 94 (2014) CrossRefGoogle Scholar
  31. 31.
    J.R.F. Lima, J. Appl. Phys. 117, 084303 (2015) CrossRefGoogle Scholar
  32. 32.
    M.M. Cunha, J. Brandão, J.R.F. Lima, F. Moraes, Eur. Phys. J. B 88, 288 (2015) CrossRefGoogle Scholar
  33. 33.
    A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) CrossRefGoogle Scholar
  34. 34.
    N. Birrell, P. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1984) Google Scholar
  35. 35.
    C. Misner, K. Thorne, J. Wheeler, in Gravitation (W.H. Freeman, 1973), No. pt. 3 Google Scholar
  36. 36.
    M.A. Vozmediano, M. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010) MathSciNetCrossRefGoogle Scholar
  37. 37.
    C. Furtado, F. Moraes, A.d.M. Carvalho, Phys. Lett. A 372, 5368 (2008) CrossRefGoogle Scholar
  38. 38.
    Y. Aharonov, D. Bohm, Phys. Rev. 123, 1511 (1961) MathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Bueno, C. Furtado, A.d.M. Carvalho, Eur. Phys. J. B 85, 53 (2012) CrossRefGoogle Scholar
  40. 40.
    R.A. Puntigam, H.H. Soleng, Class. Quant. Grav. 14, 1129 (1997) CrossRefGoogle Scholar
  41. 41.
    C. Filgueiras, F. Moraes, Ann. Phys. 323, 3150 (2008) CrossRefGoogle Scholar
  42. 42.
    C. Filgueiras, E. Silva, W. Oliveira, F. Moraes, Ann. Phys. 325, 2529 (2010) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Felipe Azevedo Gomes
    • 1
    Email author
  • Valdir Barbosa Bezerra
    • 1
  • Jonas Romero Fonseca de Lima
    • 2
  • Fernando Jorge Sampaio Moraes
    • 1
    • 2
  1. 1.Departamento de Física, CCEN, Universidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de Física, Universidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations