Advertisement

Two stage approach to functional network reconstruction for binary time-series

  • Navit DoriEmail author
  • Pablo Piedrahita
  • Yoram Louzoun
Regular Article
  • 45 Downloads

Abstract

The deduction of network connectivity from the observed node dynamics is costly in large networks. The theoretical number of possible networks containing N nodes connected by binary links grows exponentially with N square. This problem is often termed “the curse of dimensionality”. In practice, unfeasible long time-series and a high computational cost are required to detect the connectivity of a network from its observations. Given the large number of time-series currently assembled in all domains of science, a solution to this inverse problem in large networks is required. We here propose a solution to the inverse problem in large networks of binary variables through a redefinition of the problem. Instead of attempting to deduce the links of a network, we redefine the problem into the prediction of future dynamics. Specifically, we show that links between nodes can be divided into links affecting the future dynamics and links that do not. We further show that hard-to-predict links belong to the second group, and as such can be ignored when predicting future dynamics. This division is applied through a two stage algorithm. In the first stage, the vast majority of potential links (pairs of nodes) is removed, since even if they exist they do not affect the dynamics. At the second stage, a rapid high-precision estimate of the predictable links is performed using a modified partial correlation algorithm. A good predictor for the classification of potential links is the mutual information between a node-pair. Similarly, some nodes have practically no variability and as such have practically no effect on the dynamics of other nodes. The links to and from such nodes are hard to predict. We show that a two stage algorithm can be applied to these nodes with similar results. This methodology does not reproduce the network that originally induced the dynamics, but its prediction of future dynamics is similar to the one of the real network. The current analysis is limited to reconstruction using partial correlation methods. However, the same principle can be applied to other reconstruction methods.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    S. Cocco, R. Monasson, M. Weigt, PLoS Comput. Biol. 9, e1003176 (2013) ADSCrossRefGoogle Scholar
  2. 2.
    A. Coucke, G. Uguzzoni, F. Oteri, S. Cocco, R. Monasson, M. Weigt, J. Chem. Phys. 145, 174102 (2016) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Roudi, B. Dunn, J. Hertz, Curr. Opin. Neurobiol. 32, 38 (2015) CrossRefGoogle Scholar
  4. 4.
    D. Chicharro, S. Panzeri, in Information-based Methods for Neuroimaging: Analyzing Structure, Function and Dynamics (Frontiers Media SA, 2015), p. 148 Google Scholar
  5. 5.
    D.A. Smirnov, Phys. Rev. E 90, 062921 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    G. Tavoni, S. Cocco, R. Monasson, J. Comput. Neurosci. 41, 269 (2016) MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Barton, S. Cocco, J. Stat. Mech.: Theory Exp. 2013, P03002 (2013) CrossRefGoogle Scholar
  8. 8.
    A.G. Nedungadi, G. Rangarajan, N. Jain, M. Ding, J. Comput. Neurosci. 27, 55 (2009) MathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Miyakawa, N. Katsumata, D.T. Blake, M.M. Merzenich, M. Tanifuji, J. Neurosci. Methods 211, 114 (2012) CrossRefGoogle Scholar
  10. 10.
    E. Bullmore, O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009) CrossRefGoogle Scholar
  11. 11.
    M. Jalili, G.K. Maria, J. Integr. Neurosci. 10, 213 (2011) CrossRefGoogle Scholar
  12. 12.
    K.J. Blinowska, R. Kuś, M. Kamiński, Phys. Rev. E 70, 050902 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    D.Y. Kenett, M. Tumminello, A. Madi, G. Gur-Gershgoren, R.N. Mantegna, E. Ben-Jacob, PLoS One 5, e15032 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    M. Billio, M. Getmansky, A.W. Lo, L. Pelizzon, J. Finan. Econ. 104, 535 (2012) CrossRefGoogle Scholar
  15. 15.
    J. Runge, V. Petoukhov, J.F. Donges, J. Hlinka, N. Jajcay, M. Vejmelka, D. Hartman, N. Marwan, M. Paluš, J. Kurths, Nat. Commun. 6, 8502 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    J. Runge, J. Heitzig, V. Petoukhov, J. Kurths, Phys. Rev. Lett. 108, 258701 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    U. Triacca, Theor. Appl. Climatol. 81, 133 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    J. Friedman, T. Hastie, R. Tibshirani, in The Elements of Statistical Learning (Springer series in statistics Springer, Berlin, 2001), Vol. 1 Google Scholar
  19. 19.
    G. Gerstein, in Methods for Neural Ensemble Recording, edited by M. Nicolelis (CRC Press, Boca Raton, 1999), pp. 157–177 Google Scholar
  20. 20.
    M. Müller, K. Wegner, U. Kummer, G. Baier, Phys. Rev. E 73, 046106 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    L. Laloux, P. Cizeau, M. Potters, J.-P. Bouchaud, Int. J. Theor. Appl. Finance 3, 391 (2000) CrossRefGoogle Scholar
  22. 22.
    G. Lohmann, J. Stelzer, J. Neumann, N. Ay, R. Turner, Brain Connect. 3, 223 (2013) CrossRefGoogle Scholar
  23. 23.
    M. Mézard, J. Sakellariou, J. Stat. Mech.: Theory Exp. 2011, L07001 (2011) Google Scholar
  24. 24.
    Y. Roudi, J. Hertz, J. Stat. Mech.: Theory Exp. 2011, P03031 (2011) CrossRefGoogle Scholar
  25. 25.
    I.H. Stevenson, J.M. Rebesco, L.E. Miller, K.P. Körding, Curr. Opin. Neurobiol. 18, 582 (2008) CrossRefGoogle Scholar
  26. 26.
    K. Baba, R. Shibata, M. Sibuya, Aust. New Zealand J. Stat. 46, 657 (2004) CrossRefGoogle Scholar
  27. 27.
    L.A. Baccalá, K. Sameshima, Biol. Cybern. 84, 463 (2001) CrossRefGoogle Scholar
  28. 28.
    J. Massey, in Proc. Int. Symp. Inf. Theory Applic. (ISITA-90), Citeseer, 1990, pp. 303–305 Google Scholar
  29. 29.
    P.-O. Amblard, O.J. Michel, Entropy 15, 113 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    V.A. Vakorin, O.A. Krakovska, A.R. McIntosh, J. Neurosci. Methods 184, 152 (2009) CrossRefGoogle Scholar
  31. 31.
    A. Papana, D. Kugiumtzis, P.G. Larsson, Int. J. Bifurc. Chaos 22, 1250222 (2012) CrossRefGoogle Scholar
  32. 32.
    D. Kugiumtzis, Eur. Phys. J. Special Topics 222, 401 (2013) ADSCrossRefGoogle Scholar
  33. 33.
    X. Zhang, J. Zhao, J.-K. Hao, X.-M. Zhao, L. Chen, Nucleic Acids Res. 43, e31 (2014) CrossRefGoogle Scholar
  34. 34.
    R.A. Fisher, Metron 3, 329 (1924) Google Scholar
  35. 35.
    A. Baralla, W.I. Mentzen, A. De La Fuente, Ann. N. Y. Acad. Sci. 1158, 246 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    D. Marbach, R.J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, G. Stolovitzky, Proc. Natl. Acad. Sci. 107, 6286 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    J. Runge, J. Heitzig, V. Petoukhov, J. Kurths, Phys. Rev. Lett. 108, 258701 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    J. Runge, R.V. Donner, J. Kurths, Phys. Rev. E 91, 052909 (2015) ADSCrossRefGoogle Scholar
  39. 39.
    M. Songhorzadeh, K. Ansari-Asl, A. Mahmoudi, Comput. Biol. Med. 79, 110 (2016) CrossRefGoogle Scholar
  40. 40.
    J. Sun, D. Taylor, E.M. Bollt, SIAM J. Appl. Dyn. Syst. 14, 73 (2015) MathSciNetCrossRefGoogle Scholar
  41. 41.
    D. Marinazzo, M. Pellicoro, S. Stramaglia, Comput. Math. Methods Med. 2012, 303601 (2012) CrossRefGoogle Scholar
  42. 42.
    E. Siggiridou, C. Koutlis, A. Tsimpiris, V.K. Kimiskidis, D. Kugiumtzis, in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE (IEEE, 2015), pp. 4041–4044 Google Scholar
  43. 43.
    P. Wollstadt, U. Meyer, M. Wibral, PLoS One 10, e0140530 (2015) CrossRefGoogle Scholar
  44. 44.
    C.J. Needham, J.R. Bradford, A.J. Bulpitt, D.R. Westhead, PLoS Comput. Biol. 3, e129 (2007) ADSCrossRefGoogle Scholar
  45. 45.
    J. Listgarden, D. Heckerman, https://doi.org/arXiv:1206.5269 (2012)
  46. 46.
    N. Friedman, Science 303, 799 (2004) ADSCrossRefGoogle Scholar
  47. 47.
    H. Dale, J. Roy. Soc. Med. 28, 319 (1935) Google Scholar
  48. 48.
    J.C. Eccles, P. Fatt, K. Koketsu, J. Physiol. 126, 524 (1954) CrossRefGoogle Scholar
  49. 49.
    P. Erds, A. Rényi, Publ. Math. Debrecen 6, 290 (1959) MathSciNetGoogle Scholar
  50. 50.
    L.R. Varshney, B.L. Chen, E. Paniagua, D.H. Hall, D.B. Chklovskii, PLoS Comput. Biol. 7, e1001066 (2011) ADSCrossRefGoogle Scholar
  51. 51.
    T. Schreiber, Phys. Rev. Lett. 85, 461 (2000) ADSCrossRefGoogle Scholar
  52. 52.
    Y. Roudi, J. Hertz, Phys. Rev. Lett. 106, 048702 (2011) ADSCrossRefGoogle Scholar
  53. 53.
    I.H. Stevenson, K.P. Kording, Nat. Neurosci. 14, 139 (2011) CrossRefGoogle Scholar
  54. 54.
    E.A. Naumann, A.R. Kampff, D.A. Prober, A.F. Schier, F. Engert, Nat. Neurosci. 13, 513 (2010) CrossRefGoogle Scholar
  55. 55.
    O. Stetter, D. Battaglia, J. Soriano, T. Geisel, PLoS Comput. Biol. 8, e1002653 (2012) ADSCrossRefGoogle Scholar
  56. 56.
    T. Schreiber, Phys. Rev. Lett. 85, 461 (2000) ADSCrossRefGoogle Scholar
  57. 57.
    R.C. Lambert, C. Tuleau-Malot, T. Bessaih, V. Rivoirard, Y. Bouret, N. Leresche, P. Reynaud-Bouret, J. Neurosci. Methods 297, 9 (2018) Google Scholar
  58. 58.
    V. Pernice, S. Rotter, J. Stat. Mech.: Theory Exp. 2013, P03008 (2013) CrossRefGoogle Scholar
  59. 59.
    M. Paluš, in Advances in Nonlinear Geosciences (Springer, 2018), pp. 427–463 Google Scholar
  60. 60.
    D.H. Ackley, G.E. Hinton, T.J. Sejnowski, Cogn. Sci. 9, 147 (1985) CrossRefGoogle Scholar
  61. 61.
    H.J. Kappen, F.d.B. Rodríguez, Neural Comput. 10, 1137 (1998) CrossRefGoogle Scholar
  62. 62.
    T. Tanaka, Phys. Rev. E 58, 2302 (1998) ADSCrossRefGoogle Scholar
  63. 63.
    Y. Roudi, J. Tyrcha, J. Hertz, Phys. Rev. E 79, 051915 (2009) ADSCrossRefGoogle Scholar
  64. 64.
    S. Cocco, R. Monasson, V. Sessak, Phys. Rev. E 83, 051123 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Gonda Brain Research Center, Bar-Ilan UniversityRamat GanIsrael
  2. 2.Institute for Biocomputation and Physics of Complex Systems (BIFI), University of ZaragozaZaragozaSpain
  3. 3.Department of MathematicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations