Advertisement

Thermal illusion with the concept of equivalent thermal dipole

  • Liujun XuEmail author
  • Shuai Yang
  • Jiping HuangEmail author
Regular Article
  • 19 Downloads

Abstract

The research on thermal illusion contributes to both fundamental theories and practical applications. In the existing literatures, the most common mechanism is to design a shell to disguise the inside core. However, the core-shell scheme may be weak to handle many-particle systems because N particles may require N specially-designed shells. This lacks efficiency and restricts practical applications. To solve this problem, we can no longer focus on the local effect of a single particle. In contrast, we should study the macroscopic effect of the N particles by treating each particle as an equivalent thermal dipole. Then, thermal illusion can be achieved when the macroscopic equivalent thermal dipole moments of different systems are equal to each other. This requires only once calculation and contributes to efficiency. Accidentally, the concept of equivalent thermal dipole helps to revisit the well-known Bruggeman theory and provides a clear physical image for it. The proposed scheme is verified by theoretical analyses, finite-element simulations, and laboratory experiments. Our work offers an efficient approach to achieving thermal illusion in many-particle systems, and contributes to potential applications in misleading infrared detection, manipulating heat flux, etc.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    C.Z. Fan, Y. Gao, J.P. Huang, Appl. Phys. Lett. 92, 251907 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    T.Y. Chen, C.N. Weng, J.S. Chen, Appl. Phys. Lett. 93, 114103 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    S. Narayana, Y. Sato, Phys. Rev. Lett. 108, 214303 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    H.Y. Xu, X.H. Shi, F. Gao, H.D. Sun, B.L. Zhang, Phys. Rev. Lett. 112, 054301 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    T.C. Han, X. Bai, D.L. Gao, J.T.L. Thong, B.W. Li, C.W. Qiu, Phys. Rev. Lett. 112, 054302 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    Y.G. Ma, Y.C. Liu, M. Raza, Y.D. Wang, S.L. He, Phys. Rev. Lett. 113, 205501 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    T.C. Han, P. Yang, Y. Li, D.Y. Lei, B.W. Li, K. Hippalgaonkar, C.W. Qiu, Adv. Mater. 30, 1804019 (2018) CrossRefGoogle Scholar
  8. 8.
    Y. Li, K.J. Zhu, Y.G. Peng, W. Li, T.Z. Yang, H.X. Xu, H. Chen, X.F. Zhu, S.H. Fan, C.W. Qiu, Nat. Mater. 18, 48 (2018) ADSCrossRefGoogle Scholar
  9. 9.
    L.J. Xu, J.P. Huang, Phys. Rev. Appl. 12, 044048 (2019) ADSCrossRefGoogle Scholar
  10. 10.
    T.C. Han, J.J. Zhao, T. Yuan, D.Y. Lei, B.W. Li, C.W. Qiu, Energy Environ. Sci. 6, 3537 (2013) CrossRefGoogle Scholar
  11. 11.
    R.S. Kapadia, P.R. Bandaru, Appl. Phys. Lett. 105, 233903 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    T.Y. Chen, C.N. Weng, Y.L. Tsai, J. Appl. Phys. 117, 054904 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    G.Q. Xu, H.C. Zhang, Q. Zou, Y. Jin, M. Xie, Int. J. Heat Mass Transfer 115, 682 (2017) CrossRefGoogle Scholar
  14. 14.
    G.Q. Xu, H.C. Zhang, Y. Jin, S. Li, Y. Li, Opt. Express 25, A419 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    L.J. Xu, S. Yang, J.P. Huang, Phys. Rev. E 98, 052128 (2018) ADSCrossRefGoogle Scholar
  16. 16.
    K.P. Vemuri, P.R. Bandaru, Appl. Phys. Lett. 104, 083901 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    T.Z. Yang, K.P. Vemuri, P.R. Bandaru, Appl. Phys. Lett. 105, 083908 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    K.P. Vemuri, F.M. Canbazoglu, P.R. Bandaru, Appl. Phys. Lett. 105, 193904 (2014) CrossRefGoogle Scholar
  19. 19.
    L.J. Xu, S. Yang, J.P. Huang, Phys. Rev. E 99, 022107 (2019) ADSCrossRefGoogle Scholar
  20. 20.
    L.J. Xu, S. Yang, J.P. Huang, Phys. Rev. Appl. 11, 054071 (2019) ADSCrossRefGoogle Scholar
  21. 21.
    T.C. Han, X. Bai, J.T.L. Thong, B.W. Li, C.W. Qiu, Adv. Mater. 26, 1731 (2014) CrossRefGoogle Scholar
  22. 22.
    X. He, L.Z. Wu, Appl. Phys. Lett. 105, 221904 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    T.Z. Yang, X. Bai, D.L. Gao, L.Z. Wu, B.W. Li, J.T.L. Thong, C.W. Qiu, Adv. Mater. 27, 7752 (2015) CrossRefGoogle Scholar
  24. 24.
    T.Z. Yang, Y. Su, W. Xu, X.D. Yang, Appl. Phys. Lett. 109, 121905 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    Y. Li, X. Bai, T.Z. Yang, H. Luo, C.W. Qiu, Nat. Commun. 9, 273 (2018) ADSCrossRefGoogle Scholar
  26. 26.
    R. Hu, S.L. Zhou, Y. Li, D.Y. Lei, X.B. Luo, C.W. Qiu, Adv. Mater. 30, 1707237 (2018) CrossRefGoogle Scholar
  27. 27.
    S.L. Zhou, R. Hu, X.B. Luo, Int. J. Heat Mass Transfer 127, 607 (2018) CrossRefGoogle Scholar
  28. 28.
    L.J. Xu, C.R. Jiang, J.P. Huang, Eur. Phys. J. B 91, 166 (2018) ADSCrossRefGoogle Scholar
  29. 29.
    S.Y. Lu, H.C. Lin, J. Appl. Phys. 79, 6761 (1996) ADSCrossRefGoogle Scholar
  30. 30.
    S.Y. Lu, J. Appl. Phys. 84, 2647 (1998) ADSCrossRefGoogle Scholar
  31. 31.
    S.Y. Lu, J. Appl. Phys. 85, 264 (1999) ADSCrossRefGoogle Scholar
  32. 32.
    X.F. Zhou, L. Gao, J. Appl. Phys. 103, 083503 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    H.L. Fu, L. Gao, Phys. Lett. A 375, 3588 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    H.L. Fu, L. Gao, Int. J. Therm. Sci. 61, 61 (2012) CrossRefGoogle Scholar
  35. 35.
    D.A.G. Bruggeman, Ann. Phys. 24, 636 (1935) CrossRefGoogle Scholar
  36. 36.
    M. Wang, N. Pan, Mater. Sci. Eng. R 63, 1 (2008) CrossRefGoogle Scholar
  37. 37.
    L.J. Xu, S. Yang, J.P. Huang, Phys. Rev. Appl. 11, 034056 (2019) ADSCrossRefGoogle Scholar
  38. 38.
    R.M. Batlle, A. Parra, S. Laut, N.D. Valle, C. Navau, A. Sanchez, Phys. Rev. Appl. 9, 034007 (2018) ADSCrossRefGoogle Scholar
  39. 39.
    W. Jiang, Y.G. Ma, S.L. He, Phys. Rev. Appl. 9, 054041 (2018) ADSCrossRefGoogle Scholar
  40. 40.
    L.J. Xu, J.P. Huang, Europhys. Lett. 125, 64001 (2019) ADSCrossRefGoogle Scholar
  41. 41.
    L.J. Xu, J.P. Huang, Eur. Phys. J. B 92, 53 (2019) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsState Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan UniversityShanghaiP.R. China

Personalised recommendations