Advertisement

Fluctuation relations for flow-driven trapped colloids and implications for related polymeric systems

  • Aishani Ghosal
  • Binny J. CherayilEmail author
Regular Article

Abstract

This paper is a theoretical study of the stochastic thermodynamics of a single, optically trapped particle that is initially in equilibrium at temperature T and is then subjected to a steady 2D extensional flow. Specifically, it is an attempt to show how fluctuation theorems arise in systems governed by thermal noise and the opposing effects of harmonic confinement and hydrodynamic driving. Among the paper’s findings are the following: (i) that at long times, following the imposition of the flow, the system settles into an equilibrium stationary state that obeys detailed balance and that is characterized by an effective Boltzmann potential, such that the free energy change ΔF between the initial and final states is determined by the ratio of the corresponding partition functions, (ii) that the work done in the process w and the accompanying change in total entropy of system and surroundings, ΔStot, both satisfy fluctuation theorems, the first the Jarzynski equality ⟨ew/kBT⟩ = e−ΔF/kBT, and the second the integral fluctuation theorem, ⟨e−ΔStot/kB⟩ = 1, and (iii) that under a frame-invariant version of thermodynamics used to describe flow-driven particle motion, the work done W satisfies the Bochkov-Kuzovlev relation, ⟨eW/kBT⟩ = 1, while the associated total entropy change continues to satisfy the integral fluctuation theorem. These results have an immediate bearing on prior results from this lab on the dynamics of flow-driven polymers; in particular, they highlight the need to revise a number of our earlier conclusions.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

Supplementary material

References

  1. 1.
    G.N. Bochkov, Yu.E. Kuzovlev, Sov. Phys. JETP 45, 125 (1977) ADSGoogle Scholar
  2. 2.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    E.M. Sevick, R. Prabhakar, S.R. Williams, D.J. Searles, Annu. Rev. Phys. Chem. 59, 603 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    F. Ritort, Adv. Chem. Phys. 137, 31 (2008) Google Scholar
  5. 5.
    C. Jarzynski, Eur. Phys. J. B 64, 331 (2008) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Ciliberto, S. Joubaud, J. Stat. Mech. 2010, P12003 (2010) CrossRefGoogle Scholar
  7. 7.
    C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    R. Spinney, I. Ford, in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, edited by R. Klages, W. Just, C. Jarzynski (Wiley-VCH Verlag & Co., Weinheim, 2013), pp. 3–56 Google Scholar
  10. 10.
    S. Lahiri, A.M. Jayannavar, Resonance 23, 573 (2018) CrossRefGoogle Scholar
  11. 11.
    I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, 3rd edn. (Interscience, New York, 1967) Google Scholar
  12. 12.
    Y. Oono, M. Paniconi, Prog. Theor. Phys. Suppl. 130, 29 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    L.E. Reichl, A Modern Course in Statistical Physics (Wiley-VCH Verlag & Co., Weinheim, 2016) Google Scholar
  14. 14.
    O. Mazonka, C. Jarzynski, https://arXiv:cond-mat/9912121v1
  15. 15.
    A. Imparato, L. Peliti, G. Pesce, G. Rusciano, A. Sasso, Phys. Rev. E 76, 050101 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    A. Engel, Phys. Rev. E 80, 021120 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    F. Latinwo, C.M. Schroeder, Macromolecules 46, 8345 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    F. Latinwo, C.M. Schroeder, Soft Matter 10, 2178 (2014) ADSCrossRefGoogle Scholar
  19. 19.
    C.M. Schroeder, J. Rheol. 62, 371 (2018) ADSCrossRefGoogle Scholar
  20. 20.
    F. Latinwo, K.-W. Hsiao, C.M. Schroeder, J. Chem. Phys. 141, 174903 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    A. Ghosal, B.J. Cherayil, J. Chem. Phys. 144, 214902 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    A. Ghosal, B.J. Cherayil, J. Chem. Phys. 145, 204901 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    A. Ghosal, B.J. Cherayil, J. Chem. Phys. 147, 064905 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    A. Ghosal, B.J. Cherayil, J. Chem. Phys. 148, 094903 (2018) ADSCrossRefGoogle Scholar
  25. 25.
    G.G. Fuller, L.G. Leal, J. Non-Newtonian Fluid Mech. 8, 271 (1981) CrossRefGoogle Scholar
  26. 26.
    P.N. Dunlap, L.G. Leal, J. Non-Newtonian Fluid Mech. 23, 5 (1987) CrossRefGoogle Scholar
  27. 27.
    T. Tomé, Braz. J. Phys. 36, 1285 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    A. Pagare, B.J. Cherayil, preprint Google Scholar
  29. 29.
    T. Hatano, S. Sasa, Phys. Rev. Lett. 86, 3463 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    E.H. Trepagnier, C. Jarzynski, F. Ritort, G.E. Crooks, C.J. Bustamante, J. Liphardt, Proc. Natl. Acad. Sci. USA 101, 15038 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    A. Berut, A. Imparato, A. Petrosyan, S. Ciliberto, Phys. Rev. Lett. 116, 068301 (2016) ADSCrossRefGoogle Scholar
  32. 32.
    J.R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, K. Gawedzki, Phys. Rev. Lett. 103, 040601 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998) ADSCrossRefGoogle Scholar
  34. 34.
    V. Blickle, T. Speck, L. Helden, U. Seifert, C. Bechinger, Phys. Rev. Lett. 96, 070603 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    U. Seifert, Phys. Rev. Lett. 95, 040602 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    T. Speck, J. Mehl, U. Seifert, Phys. Rev. Lett. 100, 178302 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    D. Chatterjee, B.J. Cherayil, Phys. Rev. E 82, 051104 (2010) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    R. Sharma, B.J. Cherayil, Phys. Rev. E 83, 041805 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    A. Ghosal, B.J. Cherayil, J. Stat. Mech. 2016, 043201 (2016) CrossRefGoogle Scholar
  40. 40.
    M. Chaichian, A. Demichev, Stochastic Processes and Quantum Mechanics (Institute of Physics Publishing, Bristol, 2001), Vol. I Google Scholar
  41. 41.
    R.P. Feynman, A.R. Hibbs, D.F. Styer, Quantum Mechanics and Path Integrals (Dover Publications, New York, 2010) Google Scholar
  42. 42.
    J. Horowitz, C. Jarzynski, Phys. Rev. E 79, 021106 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    A. Dua, B.J. Cherayil, J. Chem. Phys. 112, 8707 (2000) ADSCrossRefGoogle Scholar
  44. 44.
    K.F. Freed, Adv. Chem. Phys. 22, 1 (1972) Google Scholar
  45. 45.
    Y. Oono, Adv. Chem. Phys. 61, 301 (1985) Google Scholar
  46. 46.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986) Google Scholar
  47. 47.
    K.F. Freed, Renormalization group Theory of Macromoleules (Wiley-Interscience, 1987) Google Scholar
  48. 48.
    Wolfram Research Inc. 2015 Mathematica, Version 10.0, Champaign, IL. Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations