Advertisement

Electronegativity, symmetry, and bond strength intrinsically control charge transport through five-membered single-molecule junction

  • 36 Accesses

Abstract

Density functional theory and Green’s function incorporated tight binding approach have been implemented to investigate the role of electronegativity, symmetry, and bond strength in charge transport of five-membered aromatic molecules, namely cyclopentadiene, thiophene, furan, pyrrole, and 5,5-dimethylcyclopenta-1,3-diene. A novel dependence of charge transport and band gap on the bond strength of the intact segment of molecule was revealed. It is found that decreasing the strength (increasing the length) of the bonds of the sound branch would enhance the electronic transmission and narrow the band gap. In addition, the electronic transmission of the symmetric systems is higher than the asymmetric counterparts and it increases (decreases) with onsite energy of the hetero-site of the symmetric (asymmetric) system.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    J. Wu, X. Liu, Y. Hao, H. Chen, P. Su, W. Wu, J. Zhu, Chemistry 13, 3691 (2018)

  2. 2.

    Y.M. Sung, J. Oh, W.-Y. Cha, W. Kim, J.M. Lim, M.-C. Yoon, D. Kim, Chem. Rev. 117, 2312 (2017)

  3. 3.

    S. Sangtarash, H. Sadeghi, C.J. Lambert, Phys. Chem. Chem. Phys. 20, 9637 (2018)

  4. 4.

    M. Gantenbein, L. Wang, A.A. Al-jobory, A.K. Ismael, C.J. Lambert, W. Hong, M.R. Bryce, Sci. Reports 7, 1794 (2017)

  5. 5.

    D.Z. Manrique, C. Huang, M. Baghernejad, X. Zhao, O.A. Al-Owaedi, H. Sadeghi, V. Kaliginedi, W. Hong, M. Gulcur, T. Wandlowski, Nat. Commun. 6, 6389 (2015)

  6. 6.

    T. Hansen, G.C. Solomon, D.Q. Andrews, M.A. Ratner, J. Chem. Phys. 131, 194704 (2009)

  7. 7.

    W. Chen, H. Li, J.R. Widawsky, C. Appayee, L. Venkataraman, R. Breslow, J. Am. Chem. Soc. 136, 920 (2014)

  8. 8.

    Y. Yang, M. Gantenbein, A. Alqorashi, J. Wei, S. Sangtarash, D. Hu, H. Sadeghi, R. Zhang, J. Pi, Chen L.-C., X. Huang, R. Li, J. Liu, J. Shi, W. Hong, C.J. Lambert, M.R. Bryce, J. Phys. Chem. C 122, 14970 (2018)

  9. 9.

    N. Xin, J. Wang, C. Jia, Z. Liu, X. Zhang, C. Yu, M. Li, S. Wang, Y. Gong, H. Sun, Nano Lett. 17, 861 (2018)

  10. 10.

    X. Yin, Y. Zang, L. Zhu, J.Z. Low, Z.-F. Liu, J. Cui, J.B. Neaton, L. Venkataraman, L.M. Campos, Sci. Adv. 3, eaao2615 (2017)

  11. 11.

    S. Fujii, S. Marqués-González, J.-Y. Shin, H. Shinokubo, T. Masuda, T. Nishino, N.P. Arasu, H. Vázquez, M. Kiguchi, Nat. Commun. 8, 15984 (2017)

  12. 12.

    A. Mahendran, P. Gopinath, R. Breslow, Tetrahedron Lett. 56, 4835 (2015)

  13. 13.

    Z. Xie, X.-L. Ji, Y. Song, M.-Z. Wei, C.-K. Wang, Chem. Phys. Lett. 639, 134 (2015)

  14. 14.

    A.D. Zdetsis, E.N. Economou, J. Phys. Chem. C 120, 29475 (2016)

  15. 15.

    G.-P. Zhang, Z. Xie, Y. Song, M.-Z. Wei, G.-C. Hu, C.-K. Wang, Org. Electron. 48, 34 (2017)

  16. 16.

    R. García, M.Á. Herranz, E. Leary, M.T. González, G.R. Bollinger, M. Bürkle, L.A. Zotti, Y. Asai, F. Pauly, J.C. Cuevas, Beilstein J. Org. Chem. 11, 1078 (2015)

  17. 17.

    R. Breslow, F.W. Foss Jr., J. Phys.: Condens. Matter 20, 374104 (2008)

  18. 18.

    S. Gil-Guerrero, N. Ramos-Berdullas, M. Mandado, Org. Electron. 61, 184 (2018)

  19. 19.

    A. Borges, G.C. Solomon, J. Phys. Chem. C 121, 8279 (2017)

  20. 20.

    J. Gomes, R. Mallion, Chem. Rev. 101, 1384 (2001)

  21. 21.

    S.M. Bachrach,Computational Organic Chemistry (Wiley, New Jersey, 2014)

  22. 22.

    A. Emilio, E. Anglada, O. Diéguez, J.D. Gale, A. García, J. Junquera, R.M. Martin, P. Ordejón, J.M. Pruneda, D. Sánchez-Portal, J.M. Soler, J. Phys.: Condens. Matter 20, 064208 (2008)

  23. 23.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

  24. 24.

    Z.Y. Mijbil, J. Phys.: Conf. Ser. 1003, 012114 (2018)

  25. 25.

    Z.Y. Mijbil, Electrical and Mechanical Properties of Molec- ular Junctions and Nano Surfaces, Ph.D. Thesis, Faculty of Science and Technology, Physics, Lancaster University, Lancaster, 2017

  26. 26.

    Z.Y. Mijbil, Solid State Commun. 287, 18 (2019)

  27. 27.

    Z.Y. Mijbil, Chem. Phys. Lett. 716, 75 (2019)

  28. 28.

    C.T. White, J. Li, D. Gunlycke, J.W. Mintmire, Nano Lett. 7, 830 (2007)

  29. 29.

    C.M. Goringe, D.R. Bowler, E. Hernández, Rep. Prog. Phys. 60, 1447 (1997)

  30. 30.

    S. Datta, in Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering (Book 3) (Cambridge University Press, 1995), p. 396

  31. 31.

    D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6854 (1981)

  32. 32.

    H. Sadeghi, S. Sangtarash, C.J. Lambert, Nano Lett. 15, 7472 (2015)

  33. 33.

    M.H. Garner, W. Bro-Jørgensen, P.D. Pedersen, G.C. Solomon, J. Phys. Chem. C 122, 47 (2018)

  34. 34.

    T. Stuyver, S. Fias, F. De Proft, P. Geerlings, Y. Tsuji, R. Hoffmann, J. Chem. Phys. 146, 092310 (2017)

  35. 35.

    B.P. Karsten, J.C. Bijleveld, L. Viani, J. Cornil, J. Gierschner, R.A. Janssen, J. Mater. Chem. 19, 5350 (2009)

  36. 36.

    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)

Download references

Author information

Correspondence to Zainelabideen Y. Mijbil.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mijbil, Z.Y. Electronegativity, symmetry, and bond strength intrinsically control charge transport through five-membered single-molecule junction. Eur. Phys. J. B 92, 220 (2019) doi:10.1140/epjb/e2019-100361-7

Download citation

Keywords

  • Mesoscopic and Nanoscale Systems