Advertisement

Investigation of optical, electrical and optoelectronic properties of SnSe crystals

  • Kunjal PatelEmail author
  • Gunvant Solanki
  • Kireetkumar Patel
  • Vivek Pathak
  • Payal Chauhan
Regular Article
  • 15 Downloads

Abstract

The optical, electrical and optoelectronic properties of tin selenide crystals are of immense significance for application in photodetectors and energy conversion and storage devices. The transition metal chalcogenides possess a layered structure that interacts with each other through van der Waal forces and can also offer sites for intercalation. The low molecular weight materials like GeSe and SnSe are found in an orthorhombic structure. In this article, the optical, electrical and optoelectronic properties of as-grown tin selenide crystals are investigated. The chemical composition of the crystals grown with the aid of direct vapour transport (DVT) technique is confirmed through energy Dispersive analysis of X-rays (EDAX), at the same time the morphological analysis is accomplished using optical microscopy and Scanning Electron Microscopy (SEM). The grown crystals are characterized by powder X-ray diffraction (XRD) method to assess the structural properties of the material. The XRD evaluation found out the orthorhombic structure of the crystals with the space group 2h16D (Pcmn) having lattice parameters a = 11.490 Å, b = 4.440 Å and c = 4.135 Å. The crystallinity of grown samples was verified by transmission electron microscopy (TEM). The single crystalline nature of grown crystals was revealed by SAED pattern. The indirect optical band gap of 1.0065 eV, Urbach energy and steepness parameter are calculated utilising UV–VIS-NIR spectrophotometer. The optical absorption of as-grown SnSe crystals has been measured close to the fundamental absorption edge at room temperature. Both types of transitions, i.e. direct and indirect, are involved in the absorption process. Electrical transport properties like resistivity measurements (parallel and perpendicular path to the c-axis) had been carried out on these crystals within the temperature range 297–673 K. Anisotropy in resistivity measurements in both the directions, i.e. parallel and perpendicular direction to the c-axis was discovered. The p-type semiconducting nature was confirmed with the aid of Hall-effect measurements. For the photodetection properties of SnSe crystals, light source (670 nm) having an intensity of 3 mW/cm2 at distinctive biasing voltages is used. The outstanding detection properties are revealed from the responsivity, specific detectivity and external quantum efficiency (EQE) of pure SnSe crystals.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    D. Yan, M. Wei, in Photofunctional layered materials (Springer International Publishing, Switzerland, 2015), Vol. 166 Google Scholar
  2. 2.
    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    M. Parenteau, C. Carlone, Phys. Rev. B 41, 5227 (1990) ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Late, B. Liu, J. Luo, A. Yan, H.S. Matte, M. Grayson, C.N. Rao, V.P. Dravid, Adv. Mater. 24, 3549 (2012) CrossRefGoogle Scholar
  5. 5.
    D.D. Cuong, S.H. Rhim, J.-H. Lee, S.C. Hong, AIP Adv. 5, 117147 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    H. Ramakrishna Matte, A. Gomathi, A. Manna, D. Late, R. Datta, S. Pati, C. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010) CrossRefGoogle Scholar
  7. 7.
    S. Isber, X. Gratens, J. Magn. Magn. Mater. 322, 1113 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    H.G. Chandra, N.J. Kumar, M.N. Rao, S. Uthanna, J. Cryst. Growth 306, 68 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    A. Agarwal, P.H. Trivedi, D. Lakshminarayana, Cryst. Res. Technol. 40, 789 (2005) CrossRefGoogle Scholar
  10. 10.
    A. Agarwal, P.D. Patel, D. Lakshminarayana, J. Cryst. Growth 142, 344 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    C. Julien, H.S. Mavi, K.P. Jain, M. Balkanski, C. Perez-Vicente, J. Morales, Mater. Sci. Eng. B 23, 98 (1994) CrossRefGoogle Scholar
  12. 12.
    A. Agarwal, M.N. Vashi, D. Lakshminarayana, N.M. Batra, J. Mater. Sci. Mater. Electr. 11, 67 (2000) CrossRefGoogle Scholar
  13. 13.
    N.K. Abrikosov, V.F. Bankina, L.V. Poretskaya, L.E. Shelimova, E.V. Skudnova, Semiconducting II–VI, IV–VI, and V–VI Compounds (US Springer, Boston, MA, 1969) Google Scholar
  14. 14.
    D.J. Late, B. Liu, H.S. Matte, C.N. Rao, V.P. Dravid, Adv. Funct. Mater. 22, 1894 (2012) CrossRefGoogle Scholar
  15. 15.
    M.A. Franzman, C.W. Schlenker, M.E. Thompson, R.L. Brutchey, J. Am. Chem. Soc. 132, 4060 (2010) CrossRefGoogle Scholar
  16. 16.
    C. Guillén, J. Montero, J. Herrero, Phys. Status Solidi A 208, 679 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    W.J. Baumgardner, J.J. Choi, Y.-F. Lim, T. Hanrath, J. Am. Chem. Soc. 132, 9519 (2010) CrossRefGoogle Scholar
  18. 18.
    K.-M. Chung, D. Wamwangi, M. Woda, M. Wuttig, W. Bensch, J. Appl. Phys. 103, 083523 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    B. Pejova, A. Tanuševski, J. Phys. Chem. C 112, 3525 (2008) CrossRefGoogle Scholar
  20. 20.
    M. Taniguchi, R.L. Johnson, J. Ghijsen, M. Cardona, Phys. Rev. B 42, 3634 (1990) ADSCrossRefGoogle Scholar
  21. 21.
    L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Li, D. Li, X.Y. Qin, J. Zhang, Scr. Mater. 126, 6 (2017) CrossRefGoogle Scholar
  23. 23.
    K. Sraitrova, J. Cizek, V. Holy, T. Plechacek, L. Benes, M. Jarosova, V. Kucek, C. Drasar, Phys. Rev. B 99, 035306 (2019) ADSCrossRefGoogle Scholar
  24. 24.
    G. Duvjir, T. Min, T.T. Ly, T. Kim, A.-T. Duong, S. Cho, S.H. Rhim, J. Lee, J. Kim, Appl. Phys. Lett. 110, 262106 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    Y. Li, B. He, J.P. Heremans, J-C Zhao, J. Alloys Compd. 669, 224 (2016) CrossRefGoogle Scholar
  27. 27.
    C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He, L.-D. Zhao, Science 360, 778 (2018) CrossRefGoogle Scholar
  28. 28.
    G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du, L.-D. Zhao, J. Am. Chem. Soc. 138, 13647 (2016) CrossRefGoogle Scholar
  29. 29.
    H. Maier, D.R. Daniel, J. Electr. Mater. 6, 693 (1977) ADSCrossRefGoogle Scholar
  30. 30.
    B. Subramanian, T. Mahalingam, C. Sanjeeviraja, M. Jayachandran, M.J. Chockalingam, Thin Solid Films 357, 119 (1999) ADSCrossRefGoogle Scholar
  31. 31.
    M. Sharon, K. Basavaswaran, Sol. Cells 20, 323 (1987) CrossRefGoogle Scholar
  32. 32.
    M. Zoaeter, A. Conan, D. Delaunay, Phys. Status Solidi A 41, 629 (1977) ADSCrossRefGoogle Scholar
  33. 33.
    P. Suguna, D. Mangalaraj, S.K. Narayandass, P. Meena, Phys. Status Solidi A 155, 405 (1996) ADSCrossRefGoogle Scholar
  34. 34.
    T. Lindgren, M. Larsson, S.-E. Lindquist, Sol. Energy Mater. Sol. Cells 73, 377 (2002) CrossRefGoogle Scholar
  35. 35.
    K. Zweibel, Sol. Energy Mater. Sol. Cells 63, 375 (2000) CrossRefGoogle Scholar
  36. 36.
    D.A. Dholakia, G.K. Solanki, S.G. Patel, M.K. Agarwal, Sci. Iran. 10, 373 (2003) Google Scholar
  37. 37.
    S.N.J. Kissinger, M. Jayachandran, K. Perumal, C. Sanjeevi Raja, Bull. Mater. Sci. 30, 547 (2007) CrossRefGoogle Scholar
  38. 38.
    V. Dixit, S. Nair, J. Joy, C.U. Vyas, G.K. Solanki, K.D. Patel, V.M. Pathak, Mater. Sci. Semicond. Process 88, 1 (2018) CrossRefGoogle Scholar
  39. 39.
    Y.G. Mansur, Synthesis of ge sx se crystals by chemical vapour transport technique and its characterizations, Ph.D. Thesis, Sardar Patel University, 2013 Google Scholar
  40. 40.
    P.M. Pataniya, Study on bulk and ultrathin layers of vxw1 xse2 van der waals ternary alloy single crystals growth characterization and optoelectronic applications, Ph.D. Thesis, Sardar Patel University, 2018 Google Scholar
  41. 41.
    C.H. Ho, Y.S. Huang, K.K. Tiong, P.C. Liao, Phys. Rev. B 58, 16130 (1998) ADSCrossRefGoogle Scholar
  42. 42.
    B. Abay, H.S. Güder, H. Efeoǧlu, Y.K. Yoǧurtçu, J. Appl. Phys. 84, 3872 (1998) ADSCrossRefGoogle Scholar
  43. 43.
    B. Abay, H.S. Güder, H. Efeoǧlu, Y.K. Yoǧurtçu, J. Phys. Chem. Solids 62, 747 (2001) ADSCrossRefGoogle Scholar
  44. 44.
    G.K. Solanki, P. Pataniya, C.K. Sumesh, K.D. Patel, V.M. Pathak, J. Cryst. Growth 441, 101 (2016) ADSCrossRefGoogle Scholar
  45. 45.
    M.A. Rahman, I.M. Ashraf, J. Phys. D: Appl. Phys. 31, 889 (1998) ADSCrossRefGoogle Scholar
  46. 46.
    P.A. Lee, Optical and Electrical Properties (Springer, Netherlands, Dordrecht, 1976) Google Scholar
  47. 47.
    A. Patel, P. Pataniya, S.B. Pillai, G.K. Solanki, P.K. Jha, K.D. Patel, V.M. Pathak, Mater. Res. Express 6, 055917 (2019) ADSCrossRefGoogle Scholar
  48. 48.
    M. Tannarana, G.K. Solanki, K.D. Patel, V.M. Pathak, P. Pataniya, Bull. Mater. Sci. 42, 79 (2019) CrossRefGoogle Scholar
  49. 49.
    F.N. Abdullaev, T.G. Kerimova, G.D. Sultanov, N.A. Abdullaev, Phys. Solid State 48, 1848 (2006) ADSCrossRefGoogle Scholar
  50. 50.
    A. Yamashita, O. Ogiso, R. Matsumoto, M. Tanaka, H. Hara, H. Tanaka, H. Takeya, C.-H. Lee, Y. Takano, J. Phys. Soc. Jpn. 87, 065001 (2018) ADSCrossRefGoogle Scholar
  51. 51.
    P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, C.K. Sumesh, Mater. Res. Express 4, 106306 (2017) ADSCrossRefGoogle Scholar
  52. 52.
    A.S. Pawbake, A. Date, S.R. Jadkar, D.J. Late, ChemistrySelect 1, 5380 (2016) CrossRefGoogle Scholar
  53. 53.
    C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, Mater. Lett. 221, 35 (2018) CrossRefGoogle Scholar
  54. 54.
    C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, Mater. Res. Express 5, 056207 (2018) ADSCrossRefGoogle Scholar
  55. 55.
    M. Tannarana, P. Pataniya, G.K. Solanki, B.S. Pillai, K.D. Patel, P.K. Jha, V.M. Pathak, Appl. Surf. Sci. 462, 856 (2018) ADSCrossRefGoogle Scholar
  56. 56.
    A.S. Pawbake et al., Mater. Res. Express 3, 105038 (2016) ADSCrossRefGoogle Scholar
  57. 57.
    J.D. Yao, Z.Q. Zheng, J.M. Shao, G.W. Yang, Nanoscale 7, 14974 (2015) ADSCrossRefGoogle Scholar
  58. 58.
    Y. Tao, X. Wu, W. Wang, J. Wang, J. Mater. Chem. C 3, 1347 (2015) CrossRefGoogle Scholar
  59. 59.
    H. Liu, N. Gao, M. Liao, X. Fang, Sci. Rep. 5, 7716 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations