Effects of randomly inhomogeneous diffusion barrier on impurity transport in a double-porous medium

  • Peter S. KondratenkoEmail author
  • Vladimir A. Kutsepalov
  • Leonid V. Matveev
Regular Article


Impurity transport regimes and concentration asymptotics in statistically homogeneous sharply contrast medium are analyzed in the case when the impurity source is surrounded by a barrier consisting of a low-permeable matrix and rare linear defects (“punctures”) that provide a rapid exit of the impurity out of the barrier to the main medium. The behavior of transport regimes depends on which of the time intervals the current time falls. The intervals are determined by characteristic times of the problem, determined by the properties of both the primary medium and the barrier. At relatively short times, the presence of a barrier leads to a significant slowdown in transport. At sufficiently large times, the transport regimes coincide with those that are realized in the problem without a barrier. The action of the barrier leads to the appearance of precursors in the concentration distribution, as well as to the modification of concentration asymptotics, in comparison with the problem without a barrier. In particular, due to the presence of the barrier, an additional asymptotic stage appears.

Graphical abstract


Statistical and Nonlinear Physics 


Author contribution statement

P.S.K. and L.V.M. formulated the problem. P.S.K., V.A.K. and L.V.M. performed calculations. V.A.K. prepared the figures. All authors jointly wrote the manuscript.


  1. 1.
    A.M. Dykhne, I.L. Dranikov, P.S. Kondratenko, L.V. Matveev, Phys. Rev. E 72, 061104 (2005) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    A.M. Dykhne, I.L. Dranikov, P.S. Kondratenko, J. Hydraul. Res. 43, 2 (2005) CrossRefGoogle Scholar
  3. 3.
    J.P. Bouchaud, A. Georges, Phys. Rep. 195,  127 (1990) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    P.S. Kondratenko, L.V. Matveev, J. Phys. 1099, 012020 (2018) Google Scholar
  5. 5.
    O.A. Dvoretskaya, P.S. Kondratenko, Transp. Porous Med. 103, 325 (2014) CrossRefGoogle Scholar
  6. 6.
    O.A. Dvoretskaya, P.S. Kondratenko, J. Phys. A 44, 465001 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    O.A. Dvoretskaya, P.S. Kondratenko, J. Exp. Theor. Phys. 116, 698 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    L.V. Matveev, J. Exp. Theor. Phys. 115, 943 (2012) CrossRefGoogle Scholar
  9. 9.
    H.H. Gerke, M.Th. van Genuchten, Water Resour. Res. 29, 305 (1993) ADSCrossRefGoogle Scholar
  10. 10.
    N.M. Goltz, P.V. Roberts, J. Contam. Hydrol. 1, 77 (1986) ADSCrossRefGoogle Scholar
  11. 11.
    J. Carrera et al., Hydrogeol. J. 6, 178 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    M. Dentz, B. Berkowitz, Water Resour. Res. 39, 1111 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    N. Muscus, R.W. Falta, J. Contam. Hydrol. 218, 94 (2018) ADSCrossRefGoogle Scholar
  14. 14.
    L.V. Matveev, Physica A 406, 119 (2014) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    P.S. Kondratenko, K.V. Leonov, J. Exp. Theor. Phys. 125, 340 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    M.E. Raikh, I.M. Ruzin, in Mesoscopic Phenomena in Solids, edited by B.I. Altshuler, P.A. Lee, R.A. Webb (Elsevier Science, Amsterdam, 1991), p. 315 Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peter S. Kondratenko
    • 1
    • 2
    Email author
  • Vladimir A. Kutsepalov
    • 2
  • Leonid V. Matveev
    • 1
    • 2
  1. 1.Nuclear Safety Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations