Advertisement

Phase-field modeling of γ-precipitate shapes in nickel-base superalloys and their classification by moment invariants

  • Markus HolzingerEmail author
  • Felix Schleifer
  • Uwe Glatzel
  • Michael Fleck
Regular Article
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling

Abstract

We develop a phase-field model for the simulation of precipitate microstructure pattern formation in nickel-base superalloys. The model accounts for the local effects from inhomogeneous and anisotropic elastic deformations, which mainly result from the lattice misfit between the precipitates and matrix phase. Further, in each time-step, we consider the chemical driving force for precipitate ripening to instantaneously equilibrate to a homogeneous value, leading to conserved phase volumes. The model is applied to study the equilibrium shape of a 2D single γ-particle embedded in the γ-matrix with varying lattice misfit and γ/γ interface energies. Further, we apply the method of moment invariants to quantify the resulting equilibrium shapes of precipitates, which turns out to be a size independent characterization of the particle shape. Resulting values for the 2D moment invariants of experimental as well as simulated particle shapes are discussed and compared. Considering ideally spherical particles, we find that large values for the γ/γ-interface width lead to systematic deviations in the resulting moment invariants.

Graphical abstract

Notes

Author contribution statement

All authors were involved in the discussion of the results and the preparation of the manuscript. All authors have read and approved the final manuscript.

References

  1. 1.
    R.C. Reed, The Superalloys Fundamentals and Applications, 1st edn. (Cambridge University Press, New York, Cambridge, UK, 2006) Google Scholar
  2. 2.
    E. Fleischmann, C.H. Konrad, J. Preußner, R. Völkl, E. Affeldt, U. Glatzel, Metall. Mater. Trans. A 46, 1125 (2015) CrossRefGoogle Scholar
  3. 3.
    I. Steinbach, Modell. Simul. Mater. Sci. Eng. 17, 073001 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Acta Mater. 57, 941 (2009) CrossRefGoogle Scholar
  5. 5.
    Y. Wang, J. Li, Acta Mater. 58, 1212 (2010) CrossRefGoogle Scholar
  6. 6.
    I. Steinbach, O. Shchyglo, Curr. Opin. Solid State Mater. Sci. 15, 87 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    L. Nguyen, R. Shi, Y. Wang, M. De Graef, Acta Mater. 103, 322 (2016) CrossRefGoogle Scholar
  8. 8.
    M. Cottura, Y. Le Bouar, B. Appolaire, A. Finel, Acta Mater. 94, 15 (2015) CrossRefGoogle Scholar
  9. 9.
    A. Gaubert, M. Jouiad, J. Cormier, Y. Le Bouar, J. Ghighi, Acta Mater. 84, 237 (2015) CrossRefGoogle Scholar
  10. 10.
    M.P. Gururajan, T.A. Abinandanan, Acta Mater. 55, 5015 (2007) CrossRefGoogle Scholar
  11. 11.
    M. Fleck, F. Schleifer, M. Holzinger, U. Glatzel, Metall. Mater. Trans. A 49, 4146 (2018) CrossRefGoogle Scholar
  12. 12.
    L.T. Mushongera, M. Fleck, J. Kundin, F. Querfurth, H. Emmerich, Adv. Eng. Mater. 17, 1149 (2015) CrossRefGoogle Scholar
  13. 13.
    J. Goerler, I. Lopez-Galilea, L. Mujica Roncery, O. Shchyglo, W. Theisen, I. Steinbach, Acta Mater. 124, 151 (2017) CrossRefGoogle Scholar
  14. 14.
    M.S. Bhaskar, Comput. Mater. Sci. 146, 102 (2018) CrossRefGoogle Scholar
  15. 15.
    Y. Pang, Y. Li, X. Wu, W. Liu, Z. Hou, Int. J. Mater. Res. 106, 108 (2015) CrossRefGoogle Scholar
  16. 16.
    A. Jokisaari, S. Naghavi, C. Wolverton, P.W. Voorhees, O. Heinonen, Acta Mater. 141, 273 (2017) CrossRefGoogle Scholar
  17. 17.
    B. Bhadak, R. Sankarasubramanian, A. Choudhury, Metall. Mater. Trans. A 49, 5705 (2018) CrossRefGoogle Scholar
  18. 18.
    S. Maitra, Proc. IEEE 67, 697 (1979) CrossRefGoogle Scholar
  19. 19.
    M.K. Hu, IRE Trans. Inf. Theory 8, 179 (1962) Google Scholar
  20. 20.
    J. MacSleyne, J. Simmons, M. De Graef, Modell. Simul. Mater. Sci. Eng. 16, 045008 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    J. MacSleyne, J. Simmons, M. De Graef, Acta Mater. 56, 427 (2008) CrossRefGoogle Scholar
  22. 22.
    J. MacSleyne, M. Uchic, J. Simmons, M. De Graef, Acta Mater. 57, 6251 (2009) CrossRefGoogle Scholar
  23. 23.
    P. Callahan, J. Simmons, M. De Graef, Modell. Simul. Mater. Sci. Eng. 21, 015003 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    J. Van Sluytman, T. Pollock, Acta Mater. 60, 1771 (2012) CrossRefGoogle Scholar
  25. 25.
    R. Rettig, N. Ritter, H. Helmer, S. Neumeier, R. Singer, Modell. Simul. Mater. Sci. Eng. 23, 035004 (2015) ADSCrossRefGoogle Scholar
  26. 26.
    A. Chowdhury, E. Kautz, B. Yener, D. Lewis, Comput. Mater. Sci. 123, 176 (2016) CrossRefGoogle Scholar
  27. 27.
    S. Haas, A. Manzoni, F. Krieg, U. Glatzel, Entropy 21, 169 (2019) ADSCrossRefGoogle Scholar
  28. 28.
    M. Plapp, Phys. Rev. E 84, 031601 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    K. Kassner, C. Misbah, J. Müller, J. Kappey, P. Kohlert, Phys. Rev. E 63, 036117 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    M. Fleck, E.A. Brener, R. Spatschek, B. Eidel, Int. J. Mater. Res. 4, 462 (2010) CrossRefGoogle Scholar
  31. 31.
    A. Durga, P. Wollants, N. Moelans, Modell. Simul. Mater. Sci. Eng. 21, 055018 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    M. Fleck, L.T. Mushongera, D. Pilipenko, K. Ankit, H. Emmerich, Eur. Phys. J. Plus 126, 95 (2011) CrossRefGoogle Scholar
  33. 33.
    M. Fleck, H. Federmann, E. Pogorelov, Comput. Mater. Sci. 153, 288 (2018) CrossRefGoogle Scholar
  34. 34.
    B. Nestler, F. Wendler, M. Selzer, B. Stinner, H. Garcke, Phys. Rev. E 78, 011604 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    P. Voorhees, G. McFadden, W. Johnson, Acta Metall. Mater. 40, 2979 (1992) ADSCrossRefGoogle Scholar
  36. 36.
    A. Finel, Y. Le Bouar, B. Dabas, B. Appolaire, Y. Yamada, T. Mohri, Phys. Rev. Lett. 121, 025501 (2018) ADSCrossRefGoogle Scholar
  37. 37.
    A. Bösch, H. Müller-Krumbhaar, O. Shochet, Z. Phys. B 97, 367 (1995) ADSCrossRefGoogle Scholar
  38. 38.
    K. Glasner, J. Comput. Phys. 174, 695 (2001) ADSCrossRefGoogle Scholar
  39. 39.
    M. Weiser, Appl. Numer. Math. 59, 1858 (2009) MathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Eiken, IOP Conf. Ser. 33, 012105 (2012) CrossRefGoogle Scholar
  41. 41.
    U. Glatzel, M. Feller-Kniepmeier, Scr. Metall. 23, 1839 (1989) CrossRefGoogle Scholar
  42. 42.
    T. Pollock, A. Argon, Acta Metall. Mater. 42, 1859 (1994) CrossRefGoogle Scholar
  43. 43.
    M. Probst-Hein, A. Dlouhy, G. Eggeler, Acta Mater. 47, 2497 (1999) CrossRefGoogle Scholar
  44. 44.
    J. Preußner, Y. Rudnik, R. Völkl, U. Glatzel, Z. Metallkd 96, 595 (2005) CrossRefGoogle Scholar
  45. 45.
    A. Jokisaari, P. Voorhees, J. Guyer, J. Warren, O. Heinonen, Comput. Mater. Sci. 149, 336 (2018) CrossRefGoogle Scholar
  46. 46.
    K. Thornton, N. Akaiwa, P. Voorhees, Acta Mater. 52, 1353 (2004) CrossRefGoogle Scholar
  47. 47.
    R. Völkl, U. Glatzel, M. Feller-Kniepmeier, Acta Mater. 46, 4395 (1998) CrossRefGoogle Scholar
  48. 48.
    A.J. Ardell, V. Ozolins, Nat. Mater. 4, 309 (2005) ADSCrossRefGoogle Scholar
  49. 49.
    B. Sonderegger, E. Kozeschnik, Metall. Mater. Trans. A 40, 499 (2009) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Markus Holzinger
    • 1
    Email author
  • Felix Schleifer
    • 1
  • Uwe Glatzel
    • 1
  • Michael Fleck
    • 1
  1. 1.Metals and Alloys, University of BayreuthBayreuthGermany

Personalised recommendations