Advertisement

Study of crystallization pathway and heterogeneous dynamics in supercooled liquid and amorphous iron

  • Pham Huu KienEmail author
Regular Article
  • 36 Downloads

Abstract

Supercooled liquid and amorphous iron (Fe) was investigated by means of molecular dynamics (MD) simulation. The crystallization was analyzed through pair radial distribution function, bond angle distribution, coordination number and transition to different atom types. Amorphous Fe possesses a large number of icosahedron type atoms which play a role in preventing of transformation into the bcc phase. The structure of amorphous Fe slightly changes during the relaxation time. The crystallization occurred when Fe was annealed at 950 K for 1.6 × 107 steps. It is found that transitions to bcc-type do not happen arbitrarily at any location in the system, but instead, they are concentrated in a non-equilibrium region. Moreover, the crystallization pathway comprises intermediate states between amorphous and crystalline ones. At the early stage, a large cluster of crystal atom formed is located in system. Then, this cluster grows up rapidly. At the final stage, the cluster of crystal atom is located in a well-equilibrium region covered a major part of the system. We found that unlike amorphous Fe, the structure of crystalline Fe is strongly heterogeneous and consists of separate regions with different local microstructure. Heterogeneous dynamics (HD) in the supercooled liquid and amorphous Fe was also examined through the distribution of mobile and immobile atoms. It is found that there is a connection between local structure, crystallization pathway and HD in the system. Mobile and immobile atoms have a tendency to segregate into separate regions.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    L. Wang, C. Peng, Y. Wang, Y. Zhang, Phys. Lett. A 350, 69 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996) CrossRefGoogle Scholar
  3. 3.
    M.I. Mendelev, J. Schmalian, C.Z. Wang, J.R. Morris, K.M. Ho, Phys. Rev. B 74, 104206 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    N. Jakse, J.F. Wax, A. Pasturel, J. Chem. Phys. 126, 234508 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    M. Li, C.Z. Wang, M.I. Mendelev, K.M. Ho, Phys. Rev. B 77, 184202 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    F.F. Chen, H.F. Zhang, F.X. Qin, Z.Q. Hu, J. Chem. Phys. 120, 1826 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    H. Pang, Z.H. Jin, K. Lu, Phys. Rev. B 67, 094113 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhang, L. Wang, W. Wang, J. Phys.: Condens. Matter 19, 196106 (2007) ADSGoogle Scholar
  9. 9.
    V. Van Hoang, N.T. Long, D.N. Son, Comput. Mater. Sci. 95, 491 (2014) CrossRefGoogle Scholar
  10. 10.
    Q.L. Cao, D.H. Huang, J.S. Yang, M.J. Wan, F.H. Wang, Physica B 450, 136 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    A. Zhu, G.J. Shiflet, S.J. Poon, Acta Mater. 56, 3550 (2008) CrossRefGoogle Scholar
  12. 12.
    V. Van Hoang, S.K. Oh, Phys. Rev. E 70, 061203 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    G. Diezemann, J. Non-Cryst. Solids 352, 4934 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    U. Tröltzsch, O. Kanoun, H.R. Tränkler, Electrochim. Acta 51, 1664 (2006) CrossRefGoogle Scholar
  15. 15.
    M.J. Jenkins, J.N. Hay, Comput. Theor. Polym. Sci. 11, 283 (2001) CrossRefGoogle Scholar
  16. 16.
    A. Kerrache, V. Teboul, D. Guichaoua, A. Monteil, J. Non-Cryst. Solids 322, 41 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    S. Ozgen, E. Duruk, Mater. Lett. 58, 1071 (2004) CrossRefGoogle Scholar
  18. 18.
    S. An, J. Li, Y. Li, S. Li, Q. Wang, B. Liu, Sci. Rep. 6, 31062 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    L.L. Zhou, R.Y. Yang, Z.A. Tian, Y.F. Mo, R.S. Liu, J. Alloys Compd. 690, 633 (2017) CrossRefGoogle Scholar
  20. 20.
    P.H. Kien, M.T. Lan, N.T. Dung, P.K. Hung, Int. J. Mod. Phys. B 28, 1450155 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    K. Kodama, S. Iikubo, T. Taguchi, S.I. Shamoto, Acta Crystallogr. Sect. A 62, 444 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    V. Van Hoang, N.H. Cuong, Physica B 404, 340 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Lauriat, J. Non-Cryst. Solids 55, 77 (1983) ADSCrossRefGoogle Scholar
  24. 24.
    J. Han, C. Wang, X. Liu, Y. Wang, Z.K. Liu, J. Jiang, ChemPhysChem 16, 3916 (2015) CrossRefGoogle Scholar
  25. 25.
    K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Nature 353, 414 (1991) ADSCrossRefGoogle Scholar
  26. 26.
    D.W. Qi, S. Wang, Phys. Rev. B 44, 884 (1991) ADSCrossRefGoogle Scholar
  27. 27.
    N. Jakse, O. Le Bacq, A. Pasturel, Phys. Rev. B 70, 174203 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    N. Jakse, A. Pasturel, J. Chem. Phys. 120, 6124 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    Y. Zhang, L. Wang, W. Wang, Phys. Lett. A 372, 690 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Thainguyen University of EducationThainguyenVietnam

Personalised recommendations