Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments

  • 196 Accesses


A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations.

Graphical abstract


  1. 1.

    M. Rieth, J. Nucl. Mater. 432, 482 (2013)

  2. 2.

    D. Armstrong, P. Edmondson, S. Roberts, Appl. Phys. Lett. 102, 251901 (2013)

  3. 3.

    R. Abernethy, Mater. Sci. Technol. 33, 388 (2017)

  4. 4.

    M. Gilbert, J.-C. Sublet, Nucl. Fusion 51, 043005 (2011)

  5. 5.

    M. Gilbert, J.-C. Sublet, S. Dudarev, Nucl. Fusion 57, 044002 (2017)

  6. 6.

    A. Xu, C. Beck, D.E. Armstrong, K. Rajan, G.D. Smith, P.A. Bagot, S.G. Roberts, Acta Mater. 87, 121 (2015)

  7. 7.

    A. Xu, D.E. Armstrong, C. Beck, M.P. Moody, G.D. Smith, P.A. Bagot, S.G. Roberts, Acta Mater. 124, 71 (2017)

  8. 8.

    S. Maloy, M. James, W. Sommer Jr. G. Willcutt Jr. M. Lopez, T. Romero, M.B. Toloczko, J. Nucl. Mater. 343, 219 (2005)

  9. 9.

    M. Klimenkov, U. Jäntsch, M. Rieth, H. Schneider, D. Armstrong, J. Gibson, S. Roberts, Nucl. Mater. Energy 9, 480 (2016)

  10. 10.

    A. Hasegawa, M. Fukuda, S. Nogami, K. Yabuuchi, Fusion Eng. Des. 89, 1568 (2014)

  11. 11.

    Y. Katoh, L.L. Snead, L.M. Garrison, X. Hu, T. Koyanagi, C.M. Parish, P.D. Edmondson, M. Fukuda, T. Hwang, T. Tanaka, A. Hasegawa, J. Nucl. Mater. 520, 193 (2019)

  12. 12.

    X. Hu, C.M. Parish, K. Wang, T. Koyanagi, B.P. Eftink, Y. Katoh, Acta Mater. 165, 51 (2019)

  13. 13.

    M.J. Lloyd, R.G. Abernethy, M.R. Gilbert, I. Griffiths, P.A.J. Bagot, D. Nguyen-Manh, M.P. Moody, D.E.J. Armstrong, Scr. Mater. 173, 96 (2019)

  14. 14.

    F. Soisson, C.-C. Fu, Phys. Rev. B 76, 214102 (2007)

  15. 15.

    F. Soisson, C. Becquart, N. Castin, C. Domain, L. Malerba, E. Vincent, J. Nucl. Mater. 406, 55 (2010)

  16. 16.

    E. Martínez, O. Senninger, C.-C. Fu, F. Soisson, Phys. Rev. B 86, 224109 (2012)

  17. 17.

    O. Senninger, F. Soisson, E. Martínez, M. Nastar, C.-C. Fu, Y. Bréchet, Acta Mater. 103, 1 (2016)

  18. 18.

    E. Martínez, O. Senninger, A. Caro, F. Soisson, M. Nastar, B.P. Uberuaga, Phys. Rev. Lett. 120, 106101 (2018)

  19. 19.

    C.-H. Huang, L. Gharaee, Y. Zhao, P. Erhart, J. Marian, Phys. Rev. B 96, 094108 (2017)

  20. 20.

    T. Suzudo, M. Yamaguchi, A. Hasegawa, Modell. Simul. Mater. Sci. Eng. 22, 075006 (2014)

  21. 21.

    T. Suzudo, M. Yamaguchi, A. Hasegawa, J. Nucl. Mater. 467, 418 (2015)

  22. 22.

    T. Suzudo, A. Hasegawa, Sci. Rep. 6, 36738 (2016)

  23. 23.

    J. Wróbel, D. Nguyen-Manh, K. Kurzydłowski, S. Dudarev, J. Phys.: Condens. Matter 29, 145403 (2017)

  24. 24.

    S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, X. Zhou, C.G. Cardona et al., Sandia Report SAND2009-6226, 2009

  25. 25.

    A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009)

  26. 26.

    J. Mundy, S. Rothman, N. Lam, H. Hoff, L. Nowicki, Phys. Rev. B 18, 6566 (1978)

  27. 27.

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum.Methods Phys. Res. Sect. B 268, 1818 (2010)

  28. 28.

    S. Pellegrino, P. Trocellier, S. Miro, Y. Serruys, É. Bordas, H. Martin, N. Chaâbane, S. Vaubaillon, J. Gallien, L. Beck, Nucl. Instr. Methods Phys. Res. Sect. B 273, 213 (2012)

  29. 29.

    A. Hasegawa, M. Fukuda, K. Yabuuchi, S. Nogami, J. Nucl. Mater. 471, 175 (2016)

  30. 30.

    M.J. Lloyd, M.P. Moody, D.E.J. Armstrong, D. Nguyen-Manh, Oxford Research Archive (2019), DOI:

Download references

Author information

Correspondence to Matthew J. Lloyd.

Additional information

Contribution to the Topical Issue “Multiscale Materials Modeling”, edited by Yoji Shibutani, Shigenobu Ogata, and Tomotsugu Shimokawa.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lloyd, M.J., Abernethy, R.G., Armstrong, D.E.J. et al. Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments. Eur. Phys. J. B 92, 241 (2019).

Download citation