Advertisement

Nickel coated carbon nanotubes in aluminum matrix composites: a multiscale simulation study

  • Samaneh NasiriEmail author
  • Kai Wang
  • Mingjun Yang
  • Qianqian Li
  • Michael Zaiser
Regular Article
  • 92 Downloads
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling

Abstract

In this work we use density functional theory (DFT) calculations to benchmark empirical potentials for the interaction between nickel and sp2 bonded carbon nanoparticles. These potentials are then used in order to investigate how Ni decorated or coated carbon nanotubes (CNT) affect the mechanical properties of Al/CNT composites. In particular we look at the pull-out behaviour of pristine as well as Ni-decorated and Ni-coated CNT from an Al matrix. Our result shows that Ni coating may produce an extended interface (“interphase”) where a significant amount of energy is dissipated during CNT pull-out, leading to a high pull-out force. We also demonstrate that surface decorated CNT may act as efficient nano-crystallization agents and thus provide a novel strengthening mechanism not previously discussed in the literature. We discuss our results in view of promising approaches for engineering CNT-metal interfaces such as to achieve high strength metal-CNT composites.

Graphical abstract

References

  1. 1.
    B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Mater. Sci. Eng. A 334, 173 (2002) CrossRefGoogle Scholar
  2. 2.
    M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, 637 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    S. Nasiri, M. Zaiser, AIMS Mater. Sci. 3, 1340 (2016) CrossRefGoogle Scholar
  4. 4.
    Q. Li, A. Viereckl, C.A. Rottmair, R.F. Singer, Compos. Sci. Technol. 69, 1193 (2009) CrossRefGoogle Scholar
  5. 5.
    R. George, K. Kashyap, R. Rahul, S. Yamdagni, Scr. Mater. 53, 1159 (2005) CrossRefGoogle Scholar
  6. 6.
    S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55, 41 (2010) CrossRefGoogle Scholar
  7. 7.
    Q. Li, C.A. Rottmair, R.F. Singer, Compos. Sci. Technol. 70, 2242 (2010) CrossRefGoogle Scholar
  8. 8.
    C. Kim, B. Lim, B. Kim, U. Shim, S. Oh, B. Sung, J. Choi, J. Ki, S. Baik, Synth. Met. 159, 424 (2009) CrossRefGoogle Scholar
  9. 9.
    M.T. Guo, C. Tsao, Mater. Sci. Eng. A 333, 134 (2002) CrossRefGoogle Scholar
  10. 10.
    Y. Si, E.T. Samulski, Chem. Mater. 20, 6792 (2008) CrossRefGoogle Scholar
  11. 11.
    N. Silvestre, B. Faria, J.N.C. Lopes, Compos. Sci. Technol. 90, 16 (2014) CrossRefGoogle Scholar
  12. 12.
    B.K. Choi, G.H. Yoon, S. Lee, Composites Part B 91, 119 (2016) CrossRefGoogle Scholar
  13. 13.
    H.Y. Song, X.W. Zha, Comput. Mater. Sci. 49, 899 (2010) CrossRefGoogle Scholar
  14. 14.
    K. Duan, L. Li, Y. Hu, X. Wang, Physica E 88, 259 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Shibuta, S. Maruyama, Comput. Mater. Sci. 39, 842 (2007) CrossRefGoogle Scholar
  16. 16.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009) Google Scholar
  17. 17.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  18. 18.
    G. Graziano, J. Klime, F. Fernandez-Alonso, A. Michaelides, J. Phys.: Condens. Matter 24, 424216 (2012) ADSGoogle Scholar
  19. 19.
    P.L. Silvestrelli, A. Ambrosetti, Phys. Rev. B 91, 195405 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    H. Muñoz-Galán, F. Viñes, J. Gebhardt, A. Görling, F. Illas, Theor. Chem. Acc. 135, 165 (2016) CrossRefGoogle Scholar
  21. 21.
    A.D. Becke, Phys. Rev. A 38, 3098 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    F. Mittendorfer, A. Garhofer, J. Redinger, J. Klime, J. Harlm, G. Kresse, Phys. Rev. B 84, 201401 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995) ADSCrossRefGoogle Scholar
  24. 24.
    Virtual Nanolab version 2017.2 QuantumWise A/S, http://www.quantumwise.com
  25. 25.
    H.M. Aktulga, J.C. Fogarty, S.A. Pandit, A.Y. Grama, Parallel Comput. 338, 245 (2012) CrossRefGoogle Scholar
  26. 26.
    O. Rahaman, A.C.T. Van Duin, W.A. Goddard, D.J. Doren, J. Phys. Chem. B 115, 249 (2010) CrossRefGoogle Scholar
  27. 27.
    Y.K. Shin, H. Kwak, C. Zou, A.V. Vasenkov, A.C.T. Van Duin, J. Phys. Chem. A 116, 12163 (2012) CrossRefGoogle Scholar
  28. 28.
    F. Tavazza, T.P. Senftle, C. Zou, C.A. Becker, A.C.T. van Duin, J. Phys. Chem. C 119, 13580 (2015) CrossRefGoogle Scholar
  29. 29.
    A.K. Rappe, W.A. Goddard, J. Phys. Chem. 95, 3358 (1991) CrossRefGoogle Scholar
  30. 30.
    D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002) ADSGoogle Scholar
  31. 31.
    S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000) ADSCrossRefGoogle Scholar
  32. 32.
    Y. Mishin, Acta Mater. 52, 1451 (2004) CrossRefGoogle Scholar
  33. 33.
    M. Moseler, F. Cervantes-Sodi, S. Hofmann, G. Csányi, A.C. Ferrari, ACS Nano 4, 7587 (2010) CrossRefGoogle Scholar
  34. 34.
    B.J. Lee, J.H. Shim, M.I. Baskes, Phys. Rev. B 68, 144112 (2003) ADSCrossRefGoogle Scholar
  35. 35.
    L. Spanu, S. Sorella, G. Galli, Phys. Rev. Lett. 103, 196401 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    M.S. Christian, A. Otero-de-la-Roza, E.R. Johnson, Carbon 124, 531 (2017) CrossRefGoogle Scholar
  37. 37.
    Q. Li, S. Fan, W. Han, C. Sun, W. Liang, Jpn. J. Appl. Phys. 36, 501 (1997) ADSCrossRefGoogle Scholar
  38. 38.
    F.Z. Kong, X.B. Zhang, W.Q. Xiong, F. Liu, W.Z. Huang, Y.L. Sun, J.P. Tu, X.W. Chen, Surf. Coat. Technol. 155, 33 (2002) CrossRefGoogle Scholar
  39. 39.
    W. Zhou, G. Yamamoto, Y. Fan, H. Kwon, T. Hashida, A. Kawasaki, Carbon 106, 37 (2016) CrossRefGoogle Scholar
  40. 40.
    B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh, Compos. Sci. Technol. 113, 1 (2015) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.WW8-Materials Simulation, Department of Materials Science, Friedrich-Alexander Universität Erlangen-NürnbergFürthGermany
  2. 2.School of Materials Science and Engineering, Southwest Petroleum UniversityChengdu, SichuanP.R. China
  3. 3.Department of AeronauticsImperial College LondonSouth KensingtonUK
  4. 4.School of Mechanics and Engineering, Southwest Jiaotong UniversityChengdu, SichuanP.R. China

Personalised recommendations