Nickel coated carbon nanotubes in aluminum matrix composites: a multiscale simulation study
- 92 Downloads
Abstract
In this work we use density functional theory (DFT) calculations to benchmark empirical potentials for the interaction between nickel and sp2 bonded carbon nanoparticles. These potentials are then used in order to investigate how Ni decorated or coated carbon nanotubes (CNT) affect the mechanical properties of Al/CNT composites. In particular we look at the pull-out behaviour of pristine as well as Ni-decorated and Ni-coated CNT from an Al matrix. Our result shows that Ni coating may produce an extended interface (“interphase”) where a significant amount of energy is dissipated during CNT pull-out, leading to a high pull-out force. We also demonstrate that surface decorated CNT may act as efficient nano-crystallization agents and thus provide a novel strengthening mechanism not previously discussed in the literature. We discuss our results in view of promising approaches for engineering CNT-metal interfaces such as to achieve high strength metal-CNT composites.
Graphical abstract
References
- 1.B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Mater. Sci. Eng. A 334, 173 (2002) CrossRefGoogle Scholar
- 2.M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, 637 (2000) ADSCrossRefGoogle Scholar
- 3.S. Nasiri, M. Zaiser, AIMS Mater. Sci. 3, 1340 (2016) CrossRefGoogle Scholar
- 4.Q. Li, A. Viereckl, C.A. Rottmair, R.F. Singer, Compos. Sci. Technol. 69, 1193 (2009) CrossRefGoogle Scholar
- 5.R. George, K. Kashyap, R. Rahul, S. Yamdagni, Scr. Mater. 53, 1159 (2005) CrossRefGoogle Scholar
- 6.S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55, 41 (2010) CrossRefGoogle Scholar
- 7.Q. Li, C.A. Rottmair, R.F. Singer, Compos. Sci. Technol. 70, 2242 (2010) CrossRefGoogle Scholar
- 8.C. Kim, B. Lim, B. Kim, U. Shim, S. Oh, B. Sung, J. Choi, J. Ki, S. Baik, Synth. Met. 159, 424 (2009) CrossRefGoogle Scholar
- 9.M.T. Guo, C. Tsao, Mater. Sci. Eng. A 333, 134 (2002) CrossRefGoogle Scholar
- 10.Y. Si, E.T. Samulski, Chem. Mater. 20, 6792 (2008) CrossRefGoogle Scholar
- 11.N. Silvestre, B. Faria, J.N.C. Lopes, Compos. Sci. Technol. 90, 16 (2014) CrossRefGoogle Scholar
- 12.B.K. Choi, G.H. Yoon, S. Lee, Composites Part B 91, 119 (2016) CrossRefGoogle Scholar
- 13.H.Y. Song, X.W. Zha, Comput. Mater. Sci. 49, 899 (2010) CrossRefGoogle Scholar
- 14.K. Duan, L. Li, Y. Hu, X. Wang, Physica E 88, 259 (2017) ADSCrossRefGoogle Scholar
- 15.Y. Shibuta, S. Maruyama, Comput. Mater. Sci. 39, 842 (2007) CrossRefGoogle Scholar
- 16.P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009) Google Scholar
- 17.P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
- 18.G. Graziano, J. Klime, F. Fernandez-Alonso, A. Michaelides, J. Phys.: Condens. Matter 24, 424216 (2012) ADSGoogle Scholar
- 19.P.L. Silvestrelli, A. Ambrosetti, Phys. Rev. B 91, 195405 (2015) ADSCrossRefGoogle Scholar
- 20.H. Muñoz-Galán, F. Viñes, J. Gebhardt, A. Görling, F. Illas, Theor. Chem. Acc. 135, 165 (2016) CrossRefGoogle Scholar
- 21.A.D. Becke, Phys. Rev. A 38, 3098 (1998) ADSCrossRefGoogle Scholar
- 22.F. Mittendorfer, A. Garhofer, J. Redinger, J. Klime, J. Harlm, G. Kresse, Phys. Rev. B 84, 201401 (2011) ADSCrossRefGoogle Scholar
- 23.S. Plimpton, J. Comput. Phys. 117, 1 (1995) ADSCrossRefGoogle Scholar
- 24.Virtual Nanolab version 2017.2 QuantumWise A/S, http://www.quantumwise.com
- 25.H.M. Aktulga, J.C. Fogarty, S.A. Pandit, A.Y. Grama, Parallel Comput. 338, 245 (2012) CrossRefGoogle Scholar
- 26.O. Rahaman, A.C.T. Van Duin, W.A. Goddard, D.J. Doren, J. Phys. Chem. B 115, 249 (2010) CrossRefGoogle Scholar
- 27.Y.K. Shin, H. Kwak, C. Zou, A.V. Vasenkov, A.C.T. Van Duin, J. Phys. Chem. A 116, 12163 (2012) CrossRefGoogle Scholar
- 28.F. Tavazza, T.P. Senftle, C. Zou, C.A. Becker, A.C.T. van Duin, J. Phys. Chem. C 119, 13580 (2015) CrossRefGoogle Scholar
- 29.A.K. Rappe, W.A. Goddard, J. Phys. Chem. 95, 3358 (1991) CrossRefGoogle Scholar
- 30.D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002) ADSGoogle Scholar
- 31.S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000) ADSCrossRefGoogle Scholar
- 32.Y. Mishin, Acta Mater. 52, 1451 (2004) CrossRefGoogle Scholar
- 33.M. Moseler, F. Cervantes-Sodi, S. Hofmann, G. Csányi, A.C. Ferrari, ACS Nano 4, 7587 (2010) CrossRefGoogle Scholar
- 34.B.J. Lee, J.H. Shim, M.I. Baskes, Phys. Rev. B 68, 144112 (2003) ADSCrossRefGoogle Scholar
- 35.L. Spanu, S. Sorella, G. Galli, Phys. Rev. Lett. 103, 196401 (2009) ADSCrossRefGoogle Scholar
- 36.M.S. Christian, A. Otero-de-la-Roza, E.R. Johnson, Carbon 124, 531 (2017) CrossRefGoogle Scholar
- 37.Q. Li, S. Fan, W. Han, C. Sun, W. Liang, Jpn. J. Appl. Phys. 36, 501 (1997) ADSCrossRefGoogle Scholar
- 38.F.Z. Kong, X.B. Zhang, W.Q. Xiong, F. Liu, W.Z. Huang, Y.L. Sun, J.P. Tu, X.W. Chen, Surf. Coat. Technol. 155, 33 (2002) CrossRefGoogle Scholar
- 39.W. Zhou, G. Yamamoto, Y. Fan, H. Kwon, T. Hashida, A. Kawasaki, Carbon 106, 37 (2016) CrossRefGoogle Scholar
- 40.B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh, Compos. Sci. Technol. 113, 1 (2015) CrossRefGoogle Scholar