Advertisement

Frequency mismatch induces Bellerophon state and mixed explosive synchronization in a two-dimensional lattice

  • Liu-Hua ZhuEmail author
  • Wu-Jie Yuan
Regular Article
  • 19 Downloads

Abstract

We study synchronization of coupled phase oscillators with linear natural frequencies in a two-dimensional lattice. The effects of two typical frequency layouts on synchronization dynamics are analyzed and discussed. The results show that the two typical frequency layouts induce two interesting dynamical behaviors. One is the Bellerophon state, the other is a mixed explosive synchronization. The Bellerophon state is a transitional state between the incoherent state and the π state, in which neither the instantaneous phases nor the instantaneous frequencies of the oscillators are locked. But the oscillators split into a series of discrete clusters and each cluster shares a unique effective frequency. The mixed explosive synchronization means that the synchronization transition is not a sudden jump, but always accompanied with continuous phase transitions. Our current work may provide a new insight into understanding of the Bellerophon state and the mixed explosive synchronization in homogenous networks.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A. Pivkosky, M. Rosenblum, J. Kurths,Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2003) Google Scholar
  2. 2.
    S. Boccaletti,The Synchronized Dynamics of Complex Systems (Elsevier, Amsterdam, 2008) Google Scholar
  3. 3.
    F. Dorfler, F. Bullo, SIAM J. Control. Optim. 50, 1616 (2012) CrossRefMathSciNetGoogle Scholar
  4. 4.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    J.A. Acebron, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005) CrossRefADSGoogle Scholar
  6. 6.
    J. Lu, H. Liu, J. Chen,Synchronization in Complex Dynamical Networks (Higher Education Press, Beijing, 2016) Google Scholar
  7. 7.
    R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008) CrossRefADSGoogle Scholar
  10. 10.
    S. Boccaletti, J.A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendina-Nadal, Z. Wang, Y. Zou, Phys. Rep. 660, 1 (2016) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    J.D. da Fonseca, C.V. Abud, J. Stat. Mech. 18, 103204 (2018) CrossRefGoogle Scholar
  12. 12.
    C.A. Moreira, M.A.M. de Aguiar, Physica A 514, 487 (2019) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984) Google Scholar
  14. 14.
    S.H. Strogatz, Physica D 143, 1 (2000) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Z. Zheng, G. Hu, B. Hu, Phys. Rev. Lett. 81, 5318 (1998) CrossRefADSGoogle Scholar
  16. 16.
    S.H. Strogatz, R.E. Mirollo, Physica D 31, 143 (1988) CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    H. Hong, M.Y. Choi, Phys. Rev. E 65, 047104 (2002) CrossRefADSGoogle Scholar
  18. 18.
    J. Rogge, D. Aeyels, J. Phys. A 37, 11135 (2004) CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Y. Ma, K. Yoshikawa, Phys. Rev. E 79, 046217 (2009) CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    H.F. El-Nashar, H.A. Cerdeira, Commun. Nonlinear Sci. Numer. Simulat. 16, 4508 (2011) CrossRefADSGoogle Scholar
  21. 21.
    W. Chen, W. Liu, Y. Lan, J. Xiao, Commun. Nonlinear Sci. Numer. Simulat. 70, 271 (2019) CrossRefADSGoogle Scholar
  22. 22.
    J. Davidsen, R. Kapral, Phys. Rev. E 66, 055202 (2002) CrossRefADSGoogle Scholar
  23. 23.
    T.E. Lee, H. Tam, G. Refael, J.L. Rogers, M.C. Cross, Phys. Rev. E 82, 036202 (2010) CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Y. Wu, J. Xiao, G. Hu, M. Zhan, Europhys. Lett. 97, 40005 (2012) CrossRefADSGoogle Scholar
  25. 25.
    I. Leyva, A. Navas, I. Sendina-Nadal, J.A. Almendral, J.M. Buld, M. Zanin, D. Papo, S. Boccaletti, Sci. Rep. 3, 01281 (2013) CrossRefADSGoogle Scholar
  26. 26.
    J. Gomez-Gardenes, S. Gomez, A. Arenas, Y. Moreno, Phys. Rev. Lett. 106, 128701 (2011) CrossRefADSGoogle Scholar
  27. 27.
    L. Zhu, L. Tian, D. Shi, Phys. Rev. E 88, 042921 (2013) CrossRefADSGoogle Scholar
  28. 28.
    P.S. Skardal, D. Taylor, J. Sun, Phys. Rev. Lett. 113, 144101 (2014) CrossRefADSGoogle Scholar
  29. 29.
    P.S. Skardal, A. Arenas, Phys. Rev. E 89, 062811 (2014) CrossRefADSGoogle Scholar
  30. 30.
    Y. Zou, T. Pereira, M. Small, Z. Liu, J. Kurths, Phys. Rev. Lett. 112, 114102 (2014) CrossRefADSGoogle Scholar
  31. 31.
    X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Phys. Rev. Lett. 114, 038701 (2015) CrossRefADSGoogle Scholar
  32. 32.
    I. Sendina-Nadal, I. Leyva, A. Navas, J.A. Villacorta-Atienza, J.A. Almendral, Z. Wang, S. Boccaletti, Phys. Rev. E 91, 032811 (2015) CrossRefADSGoogle Scholar
  33. 33.
    F. Sorrentino, L.M. Pecora, A.M. Hagerstrom, T.E. Murphy, R. Roy, Sci. Adv. 2, 1501737 (2016) CrossRefADSGoogle Scholar
  34. 34.
    H. Bi, Y.Li, L. Zhou, S. Guan, Front. Phys. 12, 126801 (2017) CrossRefGoogle Scholar
  35. 35.
    C. Wang, Y. Zou, S. Guan, J. Kurths, New J. Phys. 19, 123036 (2017) CrossRefADSGoogle Scholar
  36. 36.
    V. Avalos-Gaytan, J.A. Almendral, I. Leyva, F. Battiston, V. Nicosia, V. Latora, S. Boccaletti, Phys. Rev. E 97, 042301 (2018) CrossRefADSGoogle Scholar
  37. 37.
    L. Cao, C. Tian, Z. Wang, X. Zhang, Z. Liu, Phys. Rev. E 97, 022220 (2018) CrossRefADSGoogle Scholar
  38. 38.
    N. Lotfi, F.A. Rodrigues, A.H. Darooneh, Chaos 28, 033102 (2018) CrossRefADSGoogle Scholar
  39. 39.
    D. Yuan, J. Tian, F. Lin, D. Ma, J. Zhang, H. Cui, Y. Xiao, Front. Phys. 13, 130504 (2018) CrossRefGoogle Scholar
  40. 40.
    I. Leyva, A. Navas, I. Sendina-Nadal, S. Boccaletti, Discr. Continu. Dyn. Syst. Ser. B 23, 1931 (2018) Google Scholar
  41. 41.
    S.H. Yook, Y. Kim, Phys. Rev. E 97, 042317 (2018) CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    H. Hong, S.H. Strogatz, Phys. Rev. E 84, 046202 (2011) CrossRefADSGoogle Scholar
  43. 43.
    H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, S. Guan, Phys. Rev. Lett. 117, 204101 (2016) CrossRefADSGoogle Scholar
  44. 44.
    T. Qiu, S. Boccaletti, I. Bonamassa, Y. Zou, J. Zhou, Z. Liu, S. Guan, Sci. Rep. 6, 36713 (2016) CrossRefADSGoogle Scholar
  45. 45.
    W. Zhou, Y. Zou, J. Zhou, Z. Liu, S. Guan, Chaos 26, 123117 (2016) CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    L. Zhu, Physica D 391, 111 (2019) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Telecommunications Engineering, Yulin Normal UniversityYulinP.R. China
  2. 2.Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data ProcessingYulinP.R. China
  3. 3.College of Physics and Electronic Information, Huaibei Normal UniversityHuaibeiP.R. China

Personalised recommendations