Advertisement

Magnetic and dielectric properties of pure and ion doped RCrO3 nanoparticles

  • Angel T. Apostolov
  • Iliana N. Apostolova
  • Julia M. WesselinowaEmail author
Regular Article
  • 3 Downloads

Abstract

Using a microscopic model and the Green’s function technique the magnetic and dielectric properties of YCrO3 and GdCrO3 nanoparticles (NPs) are studied and compared with the bulk properties. Due to different surface exchange interaction constants the magnetization in YCrO3 increases whereas in GdCrO3 decreases with decreasing particle size. The size dependence of the coercive field in GdCrO3 NPs is also discussed. The bulk dielectric constant ϵ′ in YCrO3 is smaller than that in NPs, whereas in GdCrO3 is observed the opposite behavior. The magnetic field influences ϵ′ in YCrO3 NPs which is an indirect evidence for a strong magnetoelectric coupling. The effects of ion doping on ϵ′ are also studied.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    J.R. Sahu, C.R. Serrao, N. Ray, U.V. Waghmarec, C.N.R. Rao, J. Mater. Chem. 17, 42 (2007) CrossRefGoogle Scholar
  2. 2.
    V. Bedekar, R. Shukla, A.K. Tyagi, Nanotechnology 18, 155706 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    I. Singh, A.K. Nigam, K. Landfester, R. Munoz-Espi, A. Chandra, Appl. Phys. Lett. 103, 182902 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    J.-D. Seo, J.Y. Son, J. Cryst. Growth 375, 53 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K. Ozawa, J. Appl. Phys. 107, 09D905 (2011) CrossRefGoogle Scholar
  6. 6.
    M.P. Cruz, D. Valdespino, J.J. Gervacio, M. Herrera, D. Bueno-Baques, A. Duran, J. Munoz, A.C. García-Castro, F.J. Espinoza-Beltran, M. Curiel, J.M. Siqueiros, Mater. Lett. 114, 148 (2014) CrossRefGoogle Scholar
  7. 7.
    T. Ahmad, I.H. Lone, New J. Chem. 40, 3216 (2016) CrossRefGoogle Scholar
  8. 8.
    T. Ahmad, I.H. Lone, Bull. Mater. Sci. 41, 25 (2018) CrossRefGoogle Scholar
  9. 9.
    S. Krishnan, C.S.S. Sandeep, R. Philip, N. Kalarikkal, Chem. Phys. Lett. 529, 59 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    C.R. Serrao, A.K. Kundu, S.B. Krupanidhi, U.V. Waghmare, C.N.R. Rao, Phys. Rev. B 72, 220101(R) (2005) ADSCrossRefGoogle Scholar
  11. 11.
    S. Krishnan, PhD Thesis, Shodhganga, 2014 Google Scholar
  12. 12.
    A. Jaiswal, R. Das, K. Vivekanand, T. Maity, P.M. Abraham, S. Adyanthaya, P. Poddar, J. Appl. Phys. 107, 013912 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    R. Sinha, S. Basu, A.K. Meikap, Physica E 69, 47 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    P. Saxena, D. Varshney, AIP Conf. Proc. 1942, 110040 (2018) CrossRefGoogle Scholar
  15. 15.
    S. Kumar, I. Coondoo, A. Rao, B.H. Lu, Y.K. Kuo, A.L. Kholkin, N. Panwar, Physica B 510, 104 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Sundarayyaa, S.N. Kaul, S. Srinath, AIP Conf. Proc. 1665, 050126 (2015) CrossRefGoogle Scholar
  17. 17.
    B. Rajeswaran, D.I. Khomskii, A.K. Zvezdin, C.N.R. Rao, A. Sundaresan, Phys. Rev. B 86, 214409 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    P. Gupta, R. Bhargava, R. Das, P. Poddar, RSC Adv. 3, 26427 (2013) CrossRefGoogle Scholar
  19. 19.
    J.M.M. Ramirez, H.V.S. Pessoni, A. Franco Jr. F.L.A. Machado, J. Alloys Compd. 690, 315 (2017) CrossRefGoogle Scholar
  20. 20.
    A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Mod. Phys. Lett. B 29, 1550251 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    A.T. Apostolov, I.N. Apostolova, IARJSET 4, 157 (2017) CrossRefGoogle Scholar
  22. 22.
    A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Eur. Phys. J. B 88, 328 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    E.F. Bertaut, in Magnetism III, edited by G.T. Rado and H. Suhl (Academic Press, 1968), p. 149 Google Scholar
  24. 24.
    R. Blinc, B. Zeks, Adv. Phys. 21, 693 (1972) ADSCrossRefGoogle Scholar
  25. 25.
    R. Pirc, R. Blinc, Phys. Rev. B 70, 134107 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    J. Wesselinowa, T. Michael, S. Trimper, in Handbook of Nanophysics: Nanoparticles and Quantum Dots, edited by Klaus Sattler (Taylor & Francis, Boca Raton, London, New York, 2010), Vol. 4 Google Scholar
  27. 27.
    S. Mahana, B. Rakshit, R. Basu, S. Dhara, B. Joseph, U. Manju, S.D. Mahanti, D. Topwal, Phys. Rev. B 96, 104106 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    A. Ghosh, K. Dey, M. Chakraborty, S. Majumdar, S. Giri, Europhys. Lett. 107, 47012 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    P. Chen, M.N. Grisolia, H.J. Zhao, O.E. Gonzalez-Vazquez, L. Bellaiche, M. Bibes, B.-G. Liu, J. Iniguez, Phys. Rev. B 97, 024113 (2018) ADSCrossRefGoogle Scholar
  30. 30.
    A.T. Apostolov, I.N. Apostolova, S. Trimper, J.M. Wesselinowa, Phys. Status Solidi B 254, 1600433 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    J.M. Wesselinowa, J. Magn. Magn. Mater. 322, 234 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    J.M. Wesselinowa, I. Apostolova, J. Phys.: Condens. Matter 19, 216208 (2007) ADSGoogle Scholar
  33. 33.
    R.N. Bhowmik, R. Ranganathan, Solid State Commun. 141, 365 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    K. Yoshii, J. Solid State Chem. 159, 204 (2001) ADSCrossRefGoogle Scholar
  35. 35.
    K. Sardar, M.R. Lees, R.J. Kashtiban, J. Sloan, R.I. Walton, Chem. Mater. 23, 48 (2011) CrossRefGoogle Scholar
  36. 36.
    R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (John Wiley & Sons, 2000) Google Scholar
  37. 37.
    M. Banobre-Lopez, C. Vazquez-Vazquez, J. Rivas, M.A. Lopez-Quintela, Nanotechnology 14, 318 (2003) ADSCrossRefGoogle Scholar
  38. 38.
    L. Zhang, D. Xue, C. Gao, J. Magn. Magn. Mater. 267, 111 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylon, J. Magn. Magn. Mater. 308, 289 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman, J. Magn. Magn. Mater. 302, 190 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    C.N.R. Rao, C.R. Serrao, J. Mater. Chem. 17, 4931 (2007) CrossRefGoogle Scholar
  42. 42.
    V.G. Vaks, in Introduction to the Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973), p. 158 (in Russian) Google Scholar
  43. 43.
    V.S. Bhadram, B. Rajeswaran, A. Sundaresan, C. Narayana, Europhys. Lett. 101, 17008 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Mod. Phys. Lett. B 31, 1750009 (2017) ADSCrossRefGoogle Scholar
  45. 45.
    A. Duran, A.M. Arevalo-Lopez, E. Castillo-Martinez, M. Garcia-Guaderrama, E. Moran, M.P. Cruz, F. Fernandez, M.A. Alario-Franco, J. Solid State Chem. 183, 1863 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    A.A. Belik, Y. Matsushita, M. Tanaka, E. Takayama-Muromachi, Chem. Mater. 24, 2197 (2012), see Electronically Supporting Information CrossRefGoogle Scholar
  47. 47.
    H.B. Lal, R.D. Dwivedi, K. Gaur, J. Mater. Sci.: Mater. Electron. 1, 204 (1990) Google Scholar
  48. 48.
    A.K. Tripathi, H.B. Lal, J. Mater. Sci. 17, 1595 (1982) ADSCrossRefGoogle Scholar
  49. 49.
    R. Sinha, S. Basu, A.K. Meikap, Mater. Res. Bull. 97, 578 (2018) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Angel T. Apostolov
    • 1
  • Iliana N. Apostolova
    • 2
  • Julia M. Wesselinowa
    • 3
    Email author
  1. 1.University of Architecture, Civil Engineering and Geodesy, Faculty of Hydrotechnics, Department of PhysicsSofiaBulgaria
  2. 2.University of Forestry, Faculty of Forest IndustrySofiaBulgaria
  3. 3.University of Sofia, Department of PhysicsSofiaBulgaria

Personalised recommendations