Advertisement

Coupling finite element method with large scale atomic/molecular massively parallel simulator (LAMMPS) for hierarchical multiscale simulations

Modeling and simulation of amorphous polymeric materials
  • Takahiro MurashimaEmail author
  • Shingo Urata
  • Shaofan Li
Regular Article
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling

Abstract

In this work, we have developed a multiscale computational algorithm to couple finite element method with an open source molecular dynamics code – the large scale atomic/molecular massively parallel simulator (LAMMPS) – to perform hierarchical multiscale simulations in highly scalable parallel computations. The algorithm was firstly verified by performing simulations of single crystal copper deformation, and a good agreement with the well-established method was confirmed. Then, we applied the multiscale method to simulate mechanical responses of a polymeric material composed of multi-million fine scale atoms inside the representative unit cells (r-cell) against uniaxial loading. It was observed that the method can successfully capture plastic deformation in the polymer at macroscale, and reproduces the double yield points typical in polymeric materials, strain localization and necking deformation after the second yield point. In addition, parallel scalability of the multiscale algorithm was examined up to around 100 thousand processors with 10 million particles, and an almost ideal strong scaling was achieved thanks to LAMMPS parallel architecture.

Graphical abstract

Notes

Author contribution statement

TM designed the concurrent coupling algorithm and developed a code to establish interface with LAMMPS. SU developed the multiscale simulation code coupling FEM and LAMMPS, and performed validation tests. TM conducted large scale simulation for the polymeric material. TM and SU wrote simulation parts of the manuscript, and SL supervised the project, wrote and summarized the manuscript. All the authors have read and approved the final manuscript.

References

  1. 1.
    E.B. Tadmor, R.E. Miller, Modeling materials: continuum, atomistic and multiscale techniques (Cambridge University Press, Cambridge, 2011) Google Scholar
  2. 2.
    W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, Comput. Methods Appl. Mech. Eng. 193, 1529 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    A.C. To, S. Li, Phys. Rev. B 72, 035414 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    T. Murashima, S. Yasuda, T. Taniguchi, R. Yamamoto, J. Phys. Soc. Jpn. 82, 012001 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras, Europhys. Lett. 44, 783 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    J.Q. Broughton, F.F. Abraham, N. Bernstein, E. Kaxiras, Phys. Rev. B 60, 2391 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    G.J. Wagner, W.K. Liu, J. Comput. Phys. 190, 249 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    S.P. Xiao, T. Belytschko, Comput. Methods Appl. Mech. Eng. 193, 1645 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    S. Li, S. Urata, Comput. Methods Appl. Mech. Eng. 306, 452 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    S. Urata, S. Li, A multiscale molecular dynamics and coupling with nonlinear finite element method, in Workshop on Coupled Mathematical Models for Physical and Nanoscale Systems and their Applications (Springer, Berlin, 2016), pp. 215–244 Google Scholar
  11. 11.
    Q. Tong, S. Li, J. Mech. Phys. Solids 95, 169 (2016) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    N. Sheng, M.C. Boyce, D.M. Parks, G.C. Rutledge, J.I. Abes, R.E. Cohen, Polymer 45, 487 (2004) CrossRefGoogle Scholar
  13. 13.
    P.K. Valavala, T.C. Clancy, G.M. Odegard, T.S. Gates, E.C. Aifantis, Acta Mater. 57, 525 (2009) CrossRefGoogle Scholar
  14. 14.
    J.M. Wernik, S.A. Meguid, Int. J. Solids Struct. 51, 2575 (2014) CrossRefGoogle Scholar
  15. 15.
    E.B. Tadmor, M. Ortiz, R. Phillips, Philos. Mag. A 73, 1529 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    E.B. Tadmor, G.S. Smith, N. Bernstein, E. Kaxiras, Phys. Rev. B 59, 235 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    R.E. Miller, E.B. Tadmor, J. Computer-Aided Mater. Des. 9, 203 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    R. Sunyk, P. Steinmann, Int. J. Solids Struct. 40, 6877 (2003) CrossRefGoogle Scholar
  19. 19.
    E. Weinan, P. Ming, Arch. Ration. Mech. Anal. 183, 241 (2007) MathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Lyu, S. Li, J. Mech. Phys. Solids 107, 379 (2017) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Lyu, S. Li, J. Mech. Phys. Solids 122, 613 (2019) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Urata, S. Li, Int. J. Fract. 203, 159 (2017) CrossRefGoogle Scholar
  23. 23.
    S. Urata, S. Li, Acta Mater. 155, 153 (2018) CrossRefGoogle Scholar
  24. 24.
    M. Parrinello, A. Rahman, Phys. Rev. Lett. 45, 1196 (1980) ADSCrossRefGoogle Scholar
  25. 25.
    S. Urata, S. Li, Comput. Mater. Sci. 135, 64 (2017) CrossRefGoogle Scholar
  26. 26.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995) ADSCrossRefGoogle Scholar
  27. 27.
  28. 28.
    Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 224106 (2001) ADSCrossRefGoogle Scholar
  29. 29.
    K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990) ADSCrossRefGoogle Scholar
  30. 30.
  31. 31.
    T. Murashima, K. Hagita, T. Kawakatsu, J. Soc. Rheol. Jpn. (Nihon Reoroji Gakkaishi) 46, 207 (2018) CrossRefGoogle Scholar
  32. 32.
    C. Bennenmann, W. Paul, K. Binder, B. Dunweg, Phys. Rev. E 57, 843 (1998) ADSCrossRefGoogle Scholar
  33. 33.
    N.W. Brooks, R.A. Duckett, I.M. Ward, Polymer 33, 1872 (1992) CrossRefGoogle Scholar
  34. 34.
    K. Yashiro, T. Ito, Y. Tomita, Int. J. Mech. Sci. 45, 1863 (2003) CrossRefGoogle Scholar
  35. 35.
    Y. Higuchi, M. Kubo, Macromolecules 50, 3690 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    H.Y. Zhou, G.L. Wilkes, J. Mater. Sci. 33, 287 (1998) ADSCrossRefGoogle Scholar
  37. 37.

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tohoku UniversitySendaiJapan
  2. 2.AGC Inc.YokohamaJapan
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations