Advertisement

First-principles study of structural, mechanical, dynamical stability, electronic and optical properties of orthorhombic CH3NH3SnI3 under pressure

  • Ibrahim Omer Abdallah AliEmail author
  • Daniel P. Joubert
  • Mohammed S. H. Suleiman
Regular Article
  • 20 Downloads

Abstract

The structural, mechanical, dynamical stability, electronic and optical properties of orthorhombic perovskite CH3NH3SnI3 have been investigated using density functional theory (DFT) and many body perturbation theory calculations under pressure. Elastic parameters such as bulk modulus B, Young’s modulus E, shear modulus G, Poisson’s ratio ν and anisotropy value A have been calculated by the Voigt-Reuss-Hill averaging scheme at 0.7 GPa. The calculations of phonon dispersions at zero pressure showed that the orthorhombic CH3NH3SnI3 perovskite is dynamically unstable, while at P = 0.7 GPa, the orthorhombic CH3NH3SnI3 perovskite is dynamically stable. Our calculations show that CH3NH3SnI3 is a direct band gap semiconductor with an approximate density functional fundamental gap in the range of 0.73 eV to 1.21 eV, depending on the exchange-correlation approximation used. Many body perturbation theory at the G0W0 level of approximation gives a fundamental band gap of 1.51 eV. In order to obtain optical spectra, we carried out Bethe-Salpeter equation calculations on top of a non-self-consistent G0W0 calculations. Our calculated optical band gap shows anisotropy with an absorption edge of 1.27 eV in the a direction, 1.36 eV in the b direction and 1.20 eV in the c direction. Optical absorption spectra calculated at the BSE level of approximation show that the structure is a good absorber of light in the IR region, confirming that CH3NH3SnI3 has potential as a low gap solar cell absorber.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    M.A. Green, A. Ho Baillie, ACS Energy Lett. 2, 822 (2017) CrossRefGoogle Scholar
  2. 2.
    N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013) CrossRefGoogle Scholar
  3. 3.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009) CrossRefGoogle Scholar
  4. 4.
    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 1234 (2015) ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett. 13, 1764 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 967 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev et al., Science 347, 519 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013) CrossRefGoogle Scholar
  10. 10.
    Y.Y. Zhang, S. Chen, P. Xu, H. Xiang, X.G. Gong, A. Walsh, S.H. Wei, Chin. Phys. Lett. 35, 036104 (2018) ADSCrossRefGoogle Scholar
  11. 11.
    E. Mosconi, P. Umari, F. De Angelis, J. Mater. Chem. A 3, 9208 (2015) CrossRefGoogle Scholar
  12. 12.
    M. Liu, M.B. Johnston, H.J. Nature 501, 395 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston et al., Energy Environ. Sci. 7, 3061 (2014) CrossRefGoogle Scholar
  14. 14.
    J. Feng, B. Xiao, J. Phys. Chem. C 118, 19655 (2014) CrossRefGoogle Scholar
  15. 15.
    E.S. Parrott, R.L. Milot, T. Stergiopoulos, H.J. Snaith, M.B. Johnston, L.M. Herz, J. Phys. Chem. Lett. 7, 1321 (2016) CrossRefGoogle Scholar
  16. 16.
    Y. Takahashi, R. Obara, Z.Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura, Dalton Trans. 40, 5563 (2011) CrossRefGoogle Scholar
  17. 17.
    F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Nat. Photonics 8, 489 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982 (2014) CrossRefGoogle Scholar
  19. 19.
    P. Umari, E. Mosconi, F. De Angelis, Sci. Rep. 4, 4467 (2014) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Huang, L. Wang, Z. Ma, F. Wang, J. Phys. Chem. C 123, 739 (2018) CrossRefGoogle Scholar
  21. 21.
    X. Lü, Y. Wang, C.C. Stoumpos, Q. Hu, X. Guo, H. Chen, L. Yang, J.S. Smith, W. Yang, Y. Zhao et al., Adv. Mater. 28, 8663 (2016) CrossRefGoogle Scholar
  22. 22.
    W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010) CrossRefGoogle Scholar
  23. 23.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) ADSCrossRefGoogle Scholar
  24. 24.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) ADSCrossRefGoogle Scholar
  26. 26.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) ADSCrossRefGoogle Scholar
  27. 27.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    A.D. Becke, E.R. Johnson, J. Chem. Phys. 124, 221101 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    T. Hammerschmidt, I. Abrikosov, D. Alfe, S. Fries, L. Höglund, M. Jacobs, J. Koßmann, X.G. Lu, G. Paul, Phys. Status Solidi B 251, 81 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    G.D. Nguimdo, G.S. Manyali, M. Abdusalam, D.P. Joubert, Eur. Phys. J. B 89, 90 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    G. Sin’Ko, N. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002) ADSGoogle Scholar
  34. 34.
    O. Gomis, D. Santamaría Pérez, J. Ruiz Fuertes, J. Sans, R. Vilaplana, H. Ortiz, B. García-Domene, F. Manjón, D. Errandonea, P. Rodríguez-Hernández et al., J. Appl. Phys. 116, 133521 (2014) ADSCrossRefGoogle Scholar
  35. 35.
    F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014) ADSCrossRefGoogle Scholar
  36. 36.
    W. Voigt, Lehrbuch der Kristallphysik: mit Ausschluss der Kristalloptik, in B.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen (J.W. Edwards, 1928) Google Scholar
  37. 37.
    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929) CrossRefGoogle Scholar
  38. 38.
    R. Hill, Proc. Phys. Soc. A 65, 349 (1952) ADSCrossRefGoogle Scholar
  39. 39.
    D. Connétable, O. Thomas, Phys. Rev. B 79, 094101 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    P. Ravindran, L. Fast, P. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998) ADSCrossRefGoogle Scholar
  41. 41.
    A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015) CrossRefGoogle Scholar
  42. 42.
    L. Hedin, Phys. Rev. A 139, 796 (1965) ADSCrossRefGoogle Scholar
  43. 43.
    E.E. Salpeter, H.A. Bethe, Phys. Rev. 84, 1232 (1951) ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    M.S.H. Suleiman, D.P. Joubert, Phys. Status Solidi B 252, 2840 (2015) ADSCrossRefGoogle Scholar
  45. 45.
    M. Fox, in Optical Properties of Solids (Oxford University Press, 2010), Vol. 3 Google Scholar
  46. 46.
    M.S. Suleiman, M.P. Molepo, D.P. Joubert, J. Alloys Compd. 753, 576 (2018) CrossRefGoogle Scholar
  47. 47.
    J. Feng, APL Mater. 2, 081801 (2014) ADSCrossRefGoogle Scholar
  48. 48.
    M.S.H. Suleiman, A theoretical investigation of structural, electronic and optical properties of some group 10, 11 and 12 transition-metal nitrides, Ph.D. thesis, School of Physics, University of the Witwatersrand, 2013 Google Scholar
  49. 49.
    S. Pugh, The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45, 823 (1954) CrossRefGoogle Scholar
  50. 50.
    J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983) ADSCrossRefGoogle Scholar
  51. 51.
    T. Zhao, W. Shi, J. Xi, D. Wang, Z. Shuai, Sci. Rep. 6, 19968 (2016) ADSCrossRefGoogle Scholar
  52. 52.
    W.J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014) ADSCrossRefGoogle Scholar
  53. 53.
    I.O.A. Ali, D.P. Joubert, M.S.H. Suleiman, Mater. Today: Proc. 5, 10570 (2018) Google Scholar
  54. 54.
    I.O.A. Ali, D.P. Joubert, M.S.H. Suleiman, Eur. Phys. J. B 91, 263 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ibrahim Omer Abdallah Ali
    • 1
    • 2
    Email author
  • Daniel P. Joubert
    • 1
  • Mohammed S. H. Suleiman
    • 3
  1. 1.The National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of Scientific LaboratoriesSudan University of Science and TechnologyKhartoumSudan
  3. 3.Department of Basic SciencesImam Abdulrahman Bin Faisal UniversityDammamKingdom of Saudi Arabia

Personalised recommendations