Advertisement

First-principles calculations of the structural, elastic, vibrational and electronic properties of YB6 compound under pressure

  • M. RomeroEmail author
  • A. Benitez-Rico
  • E. P. Arévalo-López
  • R. W. Gómez
  • M. L. Marquina
  • J. L. Rosas
  • R. Escamilla
Regular Article

Abstract

In this paper, we report our theoretical prediction of a boron-rich binary compound, YB6, with Pm3̅m space group subjected to pressures from 0 to 50 GPa. Calculations of first principles are performed to investigate the elastic, vibrational and electronic structural properties using the Density Functional Theory (DFT) within the plane-wave pseudopotential method based on the generalized gradient approximation (GGA) proposed by Perdew-Wang (PW91). We discuss the structural stability based on elastic constants analysis (Cij) obtained with static finite strain technique. Bulk (BH), Shear (GH) and Young’s modulus (EH) as well as Poisson’s ratio (ν), were calculated with the Voigt-Reuss approximation derived from ideal polycrystalline aggregate. Other parameters such as Vickers Hardness (Hv), Pugh’s ratio GH/BH, the speed of sound (vm) and Debye temperature (θD) were given by elastic modules. We found that C11 and C12 elastic constants and elastic modulus monotonically increase while C44 decrease as a function of pressure; consequently, the structure is dynamically stable and ductile besides that hardness decreases under pressure. The phonon dispersion curves showed no imaginary phonon frequency in the entire Brillouin Zone (BZ) under pressure, showing stable Pm3̅m space group. Finally, the density of states (DOS) at the Fermi level decreases with increasing pressure, due to the decrease of the contribution of B 2-p states.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    L. Xiao, Y. Su, H. Chen, M. Jiang, S. Liu, Z. Hu, R. Liu, P. Peng, Y. Mu, D. Zhu, AIP Adv. 1, 0022140 (2011) CrossRefGoogle Scholar
  2. 2.
    N. Sekido, T. Ohmura, J.H. Perepezco, Intermetallics 89, 86 (2017) CrossRefGoogle Scholar
  3. 3.
    L. Chao, L. Bao, W. Wei, O. Tegus, Z. Zhang, J. Alloys Compd. 672, 419 (2016) CrossRefGoogle Scholar
  4. 4.
    Y. Zhou, B. Liu, H. Xiang, Z. Feng, Z. Li, Mater. Res. Lett. 3, 210 (2015) CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, H. Xiang, Z. Feng, Z. Li, J. Eur. Ceram. Soc. 35, 4437 (2015) CrossRefGoogle Scholar
  6. 6.
    G. Soto, M.G. Moreno-Armenta, A. Reyes-Serrato, Phys. Status Solidi B 246, 82 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    K. Flachbart, S. Gabani, J. Kacmarcik, T. Mori, S. Otani, V. Pavlik, in Proceedings of the 24th International Conference on Low Temperature Physics, Orlando, Florida, edited by Y. Takano, S.P. Hershfield, S.O. Hill, P.J. Hirschfeld, A.M. Goldman Melville (American Institute of Physics, NY, 2006), Vol. 850, p. 635 Google Scholar
  8. 8.
    Y.-K. Wei, J.-X. Yu, Z.-G. Li, Y. Cheng, G.-F. Ji, Physica B 406, 4476 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    X. Li, X. Huang, D. Duan, G. Wu, M. Liu, Q. Zhuang, S. Wei, Y. Huang, F. Li, Q. Zhou, B. Liu, T. Cui, RSC Adv. 6, 18077 (2006) CrossRefGoogle Scholar
  10. 10.
    R. Khasanov, P.S. Häfliger, N. Shitsevalova, A. Dukhnenko, R. Brütsch, H. Keller, Phys. Rev. Lett. 97, 157002 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Xu, L. Zhang, T. Cui, Y. Li, Y. Xie, W. Yu, Y. Ma, G. Zou, Phys. Rev. B 76, 214103 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    S. Gabáni, I. Takácová, G. Pristás, E. Gazo, K. Flachbart, T. Mori, D. Braithwaite, M. Mísek, K.V. Kamenev, M. Hanfland, P. Samuely, Phys. Rev. B 90, 045136 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    J.A. Alarco, M. Shahbazi, P.C. Talbot, I.D. Mackinnon, J. Raman Spectrosc. 49, 1 (2018) CrossRefGoogle Scholar
  14. 14.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005) Google Scholar
  15. 15.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002) ADSGoogle Scholar
  16. 16.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) ADSCrossRefGoogle Scholar
  17. 17.
    M.C. Payne, M.P. Teter, D.C. Allan, D.C. Allan, T.A. Arias, J.D.J. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    K. Burke, J.P. Perdew, Y. Wang. in Electronic Density Functional Theory: The PW91 Density Functional, edited by J.F. Dobson, G. Vignale, M.P. Das (Springer, Boston, MA, 1998) Google Scholar
  19. 19.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    D.R. Hammann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979) ADSCrossRefGoogle Scholar
  21. 21.
    Y.S. Zhao, D.J. Weidner, J.B. Parise, D.E. Cox, Phys. Earth Planet. Inter. 76, 1 (1993) ADSCrossRefGoogle Scholar
  22. 22.
    M. Korsukova, in Proceedings of the 11thInternational Symposium on Boron, Borides and Related Compounds, JJAP Series 10 (1994), Vol. 15 Google Scholar
  23. 23.
    G.E. Grechnev, A.E. Baranovskiy, V.D. Fil, T.V. Ignatova, I.G. Kolobov, A.V. Logosha, Fiz. Nizk. Temp. 34, 1167 (2008) Google Scholar
  24. 24.
    J.F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1985) Google Scholar
  25. 25.
    W. Voigt, Lehrbuch der Kristallphysik (B.G. Teubner, Leipzig-Berlin, 1928), p. 739 Google Scholar
  26. 26.
    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929) CrossRefGoogle Scholar
  27. 27.
    R. Hill, Proc. Phys. Soc. 65, 349 (1952) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Metals Hard Mater. 33, 93 (2012) CrossRefGoogle Scholar
  29. 29.
    L.O. Anderson, J. Phys. Chem. Solids. 24, 909 (1963) ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, 2000) Google Scholar
  31. 31.
    Y.S. Ponosova, N.Y. Shitsevalova, JETP Lett. 102, 295 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    H. Bando, T. Hasegawa, N. Ogita, M. Udagawa, F. Iga, J. Phys. Soc. Jpn. 80, SA053 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    R. Lortz, Y. Wang, U. Tutsch, S. Abe, C. Meingast, P. Popovich, W. Knafo, N. Shitsevalova, Yu.B. Paderno, A. Junod, Phys. Rev. B 73, 024512 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    T. Gürel, R. Eryiğit, Phys. Rev. B 82, 104302 (2010) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Romero
    • 1
    Email author
  • A. Benitez-Rico
    • 2
  • E. P. Arévalo-López
    • 1
  • R. W. Gómez
    • 1
  • M. L. Marquina
    • 1
  • J. L. Rosas
    • 3
  • R. Escamilla
    • 3
  1. 1.Facultad de Ciencias, Universidad Nacional Autónoma de MéxicoMéxicoMexico
  2. 2.GIDi Ingeniería de Procesos y Nuevos Materiales, Facultad de Ciencias Químicas, Universidad La SalleMéxico CDMXMexico
  3. 3.Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations