Advertisement

An observable prerequisite for the existence of persistent currents

  • Jacob SzeftelEmail author
  • Nicolas Sandeau
  • Michel Abou Ghantous
Regular Article
  • 20 Downloads

Abstract

A classical model is presented for persistent currents in superconductors. Their existence is argued to be warranted because their decay would violate the second law of thermodynamics. This conclusion is achieved by analyzing comparatively Ohm’s law and the Joule effect in normal metals and superconducting materials. Whereas Ohm’s law applies in identical terms in both cases, the Joule effect is shown to cause the temperature of a superconducting sample to decrease. An experiment is proposed to check the validity of this work in superconductors of both types I and II.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, 1976) Google Scholar
  2. 2.
    R.D. Parks, Superconductivity (CRC Press, 1969) Google Scholar
  3. 3.
    M. Tinkham, Introduction to Superconductivity (Dover Books, 2004) Google Scholar
  4. 4.
    H.K. Onnes, Commun. Phys. Lab. Univ. Leiden 122b, 13 (1911) Google Scholar
  5. 5.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    F. London, in Superfluids (Wiley, 1950), Vol. 1 Google Scholar
  7. 7.
    V.L. Ginzburg, L.D. Landau, Zh. Eksperim. i. Teor. Fiz. 1064, 20 (1950) Google Scholar
  8. 8.
    J. Matricon, G. Waysand, The Cold Wars, a History of Superconductivity (Rutgers University Press, 2003) Google Scholar
  9. 9.
    J.R. Schrieffer, Theory of Superconductivity (Addison-Wesley, 1993) Google Scholar
  10. 10.
    V.B. Geshkenbein, V.M. Vinokur, R. Fehrenbacher, Phys. Rev. B 43, 3748 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    S. Samarappuli, A. Schilling, M.A. Chernikov, H.R. Ott, Th. Wolf, Physica C 201, 159 (1992) ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Jackson, Classical Electrodynamics (John Wiley, 1998) Google Scholar
  13. 13.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, 1999) Google Scholar
  14. 14.
    W. Meissner, R. Ochsenfeld, Naturwiss 21, 787 (1933) ADSCrossRefGoogle Scholar
  15. 15.
    J. Szeftel, N. Sandeau, A. Khater, Phys. Lett. A 381, 1525 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    J. Szeftel, N. Sandeau, A. Khater, Progr. Electromagn. Res. M 69, 69 (2018) CrossRefGoogle Scholar
  17. 17.
    J. Szeftel, M. Abou Ghantous, N. Sandeau, Progr. Electromagn. Res. L 81, 1 (2019) CrossRefGoogle Scholar
  18. 18.
    P.G. De Gennes, Superconductivity of Metals and Alloys (Addison-Wesley, Reading, MA, 1989) Google Scholar
  19. 19.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, London, 1959) Google Scholar
  20. 20.
    C.J. Gorter, H.B.G. Casimir, Z. Tech. Phys. 15, 539 (1934) Google Scholar
  21. 21.
    B.D. Josephson, Phys. Lett. 1, 251 (1962) ADSCrossRefGoogle Scholar
  22. 22.
    L.N. Cooper, Phys. Rev. 104, 1189 (1956) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jacob Szeftel
    • 1
    Email author
  • Nicolas Sandeau
    • 2
  • Michel Abou Ghantous
    • 3
  1. 1.Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, Ecole Normale Supérieure de Paris-Saclay, CentraleSupélec, CNRS, Université Paris-SaclayCachanFrance
  2. 2.Aix Marseille Univ, CNRS, Centrale Marseille, Institut FresnelMarseilleFrance
  3. 3.American University of Technology, AUT HalatHalat, HighwayLebanon

Personalised recommendations