Advertisement

T-matrix formulation of real-space dynamical mean-field theory and the Friedel sum rule for correlated lattice fermions

  • Krzysztof ByczukEmail author
  • Banhi Chatterjee
  • Dieter Vollhardt
Open Access
Regular Article
  • 132 Downloads

Abstract

We formulate real-space dynamical mean-field theory within scattering theory. Thereby the Friedel sum rule is derived for interacting lattice fermions at zero temperature.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    J. Friedel, Philos. Mag. 43, 153 (1952) CrossRefGoogle Scholar
  2. 2.
    J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958) CrossRefGoogle Scholar
  3. 3.
    C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc., New York, London, Sidney, 1963) Google Scholar
  4. 4.
    J. Rudnick, E.A. Stern, Phys. Rev. B 7, 5062 (1973) ADSCrossRefGoogle Scholar
  5. 5.
    G.D. Mahan, Int. J. Mod. Phys. 9, 1313 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    G.D. Mahan, Int. J. Mod. Phys. 9, 1327 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    J.S. Langer, V. Ambegaokar, Phys. Rev. 121, 1090 (1961) ADSCrossRefGoogle Scholar
  8. 8.
    R.M. Martin, Phys. Rev. Lett. 48, 362 (1982) ADSCrossRefGoogle Scholar
  9. 9.
    D.C. Langreth, Phys. Rev. 150, 516 (1966) ADSCrossRefGoogle Scholar
  10. 10.
    J. Villain, M. Lavagna, P. Bruno, C. R. Phys. 17, 276 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    A. Georges, C. R. Phys. 17, 430 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    A. Yoshimori, A. Zawadowski, J. Phys. C: Solid State Phys. 15, 5241 (1982) ADSCrossRefGoogle Scholar
  13. 13.
    S. Datta, W. Tian, Phys. Rev. B 55, 4 (1997) CrossRefGoogle Scholar
  14. 14.
    S. Bandopadhyay, P.S. Deo, Phys. Rev. B 68, 113301 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    B. Rosenow, Y. Gefen, Phys. Rev. Lett. 108, 256805 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    See, for example, P. Sessi, V.M. Silkin, I.A. Nechaev, Th. Bathon, L. El-Kareh, E.V. Chulkov, P.M. Echenique, M. Bode, Nat. Commun. 6, 8691 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    K. Riechers, K. Hueck, N.L.Th. Lompe, H. Moritz, Eur. Phys. J. D 71, 232 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    See, for example, E.G. Dalla Torre, D. Benjamin, Y. He, D. Dentelski, E. Demler, Phys. Rev. B 93, 205117 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989) ADSCrossRefGoogle Scholar
  20. 20.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    V. Dobrosavljevic, G. Kotliar, Phys. Rev. Lett. 78, 3942 (1997) ADSCrossRefGoogle Scholar
  22. 22.
    M. Potthoff, W. Nolting, Phys. Rev. B 59, 2549 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    M. Potthoff, W. Nolting, Phys. Rev. B 60, 7834 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    J.K. Freericks, Phys. Rev. B 70, 195342 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    S. Okamoto, A.J. Millis, Phys. Rev. B 70, 241104 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    R.W. Helmes, T. Costi, A. Rosch, Phys. Rev. Lett. 100, 056403 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    R.W. Helmes, T. Costi, A. Rosch, Phys. Rev. Lett. 101, 066802 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    M. Snoek, I. Titvinidze, C. Toke, K. Byczuk, W. Hofstetter, New J. Phys. 10, 093008 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    K. Ziegler, D. Poilblanc, R. Preuss, W. Hanke, D.J. Scalapino, Phys. Rev. 53, 8704 (1996) ADSCrossRefGoogle Scholar
  30. 30.
    P. Lederer, M.J. Rozenberg, Europhys. Lett. 81, 67002 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    S. Mukherjee, W.-Ch. Lee, Phys. Rev. B 92, 241102 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    S. Doniach, E.H. Sondheimer, Green’s Functions for Solid State Physicists (Imperial College Press, London, 1998) Google Scholar
  33. 33.
    F. Gracía-Moliner, Theory of Imperfect Crystalline Solids – Trieste Lectures 1970 (International Atomic energy Agency, Vienna, 1971), pp. 1–100 Google Scholar
  34. 34.
    N. Levinson, Kgl. Danske Videnskab. Selskab., Mat. Fys. Medd. 25, No. 9, 1 (1949) Google Scholar
  35. 35.
    J.M. Jauch, Helv. Phys. Acta 30, 143 (1957) MathSciNetGoogle Scholar
  36. 36.
    J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960) ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    J.M. Luttinger, Phys. Rev. 119, 1153 (1960) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000) ADSCrossRefGoogle Scholar
  39. 39.
    K. Seki, S. Yunoki, Phys. Rev. B 96, 085124 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    B. Chatterjee, J. Skolimowski, K. Makuch, K. Byczuk, https://doi.org/arXiv:1807.08566 (2018)
  41. 41.
    R. Bellman, Introduction to Matrix Analysis (McGraw-Hill Inc., US, 1970) Google Scholar
  42. 42.
    H. Bruus, K. Flensberg, Many-body Quantum Theory in Condensed Matter Physics (Oxford University Press, Oxford, 2004) Google Scholar
  43. 43.
    M. Fabrizo, Lecture Notes on Many-Body Theory (SISSA, 2013), unpublished Google Scholar
  44. 44.
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover Publication, New York, 1975) Google Scholar

Copyright information

© The Author(s) 2019

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, Faculty of Physics, University of WarsawWarszawaPoland
  2. 2.Institute of Physics, Czech Academy of SciencesPragueCzech Republic
  3. 3.Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of AugsburgAugsburgGermany

Personalised recommendations