Advertisement

Electrical and thermal conductivities of few-layer armchair graphene nanoribbons

  • Hamze MousaviEmail author
  • Samira Jalilvand
Regular Article
  • 12 Downloads

Abstract

The tight-binding Hamiltonian model and the Green’s function formalism have been employed to calculate the temperature dependent electrical and electronic thermal conductivities of metal and few-layer armchair graphene nanoribbon semiconductors and the results were compared with the mono-layer system. It was observed that due to the overlapping of the nonhybridized pz orbital perpendicular to the sheets, increasing the layers of the systems causes the conductivities of the layers to decrease. Also, these quantities are calculated for three different values of interlayer hopping of the nonhybridized pz orbitals. The results show that in low temperatures, the electrical and thermal conductivities of the system increase when the interlayer hopping term is increased. However, by increasing the temperature, the curves representing electrical conductivities converge to the same value while thermal conductivity decreases.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315, 1379 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    N.M.R. Peres, F. Guinea, A.C. Neto, Phys. Rev. B 73, 125411 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    Y.C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D.G.d. Oteyza, F.R. Fischer, S.G. Louie, M.F. Crommie, Nat. Nanotechnol. 10, 156 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    K. Sasaki, S. Murakami, R. Saito, Appl. Phys. Lett. 88, 113110 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    H.-S.P. Wong, D. Akinwande, Carbon nanotube and graphene device physics (Cambridge University Press, 2011) Google Scholar
  9. 9.
    K. Wakabayashi, K. Sasaki, T. Nakanishi, T. Enoki, Sci. Technol. Adv. Mater. 11, 054504 (2010) CrossRefGoogle Scholar
  10. 10.
    R.P. Bandaru, J. Nanosci. Nanotechnol. 7, 1239 (2007) CrossRefGoogle Scholar
  11. 11.
    H. Mousavi, M. Bagheri, Physica E 44, 1722 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    M. Edward, M. Koshino, Rep. Prog. Phys. 76, 056503 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    J.C. Charlier, J.P. Michenaud, P. Lambin, Phys. Rev. B 46, 4540 (1992) ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Charlier, X. Gonze, J.P. Michenaud, Carbon 32, 289 (1994) CrossRefGoogle Scholar
  16. 16.
    J. Nilsson, A.C. Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 78, 045405 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    Z. Guo, D. Zhang, X.G. Gong, Appl. Phys. Lett. 95, 163103 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    N. Wei, L. Xu, H.Q. Wang, J.C. Zheng, Nanotechnology 22, 105705 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    Z. Aksamija, I. Knezevic, Appl. Phys. Lett. 98, 141919 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    T.Y. Ng, J.J. Yeo, Z.S. Liu, Carbon 50, 4887 (2012) CrossRefGoogle Scholar
  22. 22.
    T.T. Baby, S. Ramaprabhu, Nanoscale Res. Lett. 6, 289 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, Powder Technol. 221, 351 (2012) CrossRefGoogle Scholar
  24. 24.
    M. Trushin, J. Schliemann, Phys. Rev. Lett. 99, 216602 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    T. Schwamb, B.R. Burg, N.C. Schirmer, D. Poulikakos, Nanotechnology 20, 405704 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    L. Cui, Y. Zhang, X. Du, G. Wei, J. Mater. Sci. 53, 4242 (2018) ADSCrossRefGoogle Scholar
  27. 27.
    L. Dong, R.R. Namburu, T.P. O’Regan, M. Dubey, A.M. Dongare, J. Mater. Sci. 49, 6762 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    H. Mousavi, Physica B 414, 78 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    H. Mousavi, J. Magn. Magn. Mater. 322, 2533 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    H. Mousavi, M. Bagheri, J. Khodadadi, Physica E 74, 135 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    H. Mousavi, Opt. Commun. 285, 3137 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    H. Mousavi, S. Jalilvand, J.M. Kurdestany, Physica B 502, 132 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    H. Mousavi, S. Jalilvand, F. Mirzaei, J. Magn. Magn. Mater. 469, 405 (2019) ADSCrossRefGoogle Scholar
  34. 34.
    H. Mousavi, M. Grabowski, J. Low Temp. Phys. 193, 12 (2018) ADSCrossRefGoogle Scholar
  35. 35.
    H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an introduction (Oxford University Press, 2004) Google Scholar
  36. 36.
    E.N. Economou, Green’s functions in quantum physics, 3rd edn. (Springer-Verlag, Berlin-Heidelberg, 2006) Google Scholar
  37. 37.
    G.D. Mahan, Many particle physics, 3rd edn. (Kluwer Academic/ Publishers, 2000) Google Scholar
  38. 38.
    S.F. Edwards, Philos. Mag. 3, 1020 (1958) ADSCrossRefGoogle Scholar
  39. 39.
    S.F. Edwards, Philos. Mag. 4, 1171 (1959) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    B. Velicky, Phys. Rev. 184, 614 (1969) ADSCrossRefGoogle Scholar
  41. 41.
    I. Paul, G. Kotliar, Phys. Rev. B 67, 115131 (2003) ADSCrossRefGoogle Scholar
  42. 42.
    C.L. Lu, C.P. Chang, Y.C. Huang, R.B. Chen, M.L. Lin, Phys. Rev. B 73, 144427 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    Y. Takane, J. Phys. Soc. Jpn. 79, 124706 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.L.d. Santos, J. Nilsson, F. Guinea, A.K. Geim, A.C. Neto, J. Phys.: Condens. Matter 22, 175503 (2010) ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran

Personalised recommendations