Multi stability and global bifurcations in epidemic model with distributed delay SIRnS-model

  • Gorm Gruner JensenEmail author
  • Florian Uekermann
  • Kim Sneppen
Regular Article


Many diseases, such as influenza and the common cold, cause recurrent epidemics. The classical SIRS model fails to obtain recurrent epidemics as it predicts a globally stable endemic fixed point. This endemic fixed point is, however, linearly unstable for most parameters, if one assumes that the time spent in the recovered state is deterministic rather than exponentially distributed. In that case all trajectories converge to a stable epidemic limit cycle. It has been shown that a similar region of instability exists for systems with intermediate immune time distributions. Furthermore, it has been suggested that a bistable region could exist. Here, we first characterize this bistable region using a combination of direct simulation and bifurcation theory. We find that it has a bound where the stable epidemic limit cycle annihilates with an unstable limit cycle in a non-local bifurcation. Secondly, we extend the bifurcation-analysis to narrower immune time distributions than previous studies. Here, we find new levels of complexity in the bifurcation diagram, including the possibility for at least two different epidemic limit cycles at the same disease parameters. Overall our study highlights that a given disease may have multiple epidemic signatures, dependent on how it is introduced.

Graphical abstract


Statistical and Nonlinear Physics 


  1. 1.
    W.O. Kermack, A.G. McKendrick, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1927), Vol. 115, pp. 700–721 Google Scholar
  2. 2.
    R.M. Anderson, R.M. May, B. Anderson, in Infectious diseases of humans: dynamics and control (Wiley Online Library, 1992), Vol. 28 Google Scholar
  3. 3.
    H.W. Hethcote, SIAM Rev. 42, 599 (2000) MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Korobeinikov, G.C. Wake, Appl. Math. Lett. 15, 955 (2002) MathSciNetCrossRefGoogle Scholar
  5. 5.
    K.L. Cooke, J.L. Kaplan, Math. Biosci. 31, 87 (1976) MathSciNetCrossRefGoogle Scholar
  6. 6.
    H.W. Hethcote, Bull. Math. Biol. 35, 607 (1973) CrossRefGoogle Scholar
  7. 7.
    R. Xu, Z. Ma, Chaos, Solitons Fract. 41, 2319 (2009) CrossRefGoogle Scholar
  8. 8.
    A.S. Klovdahl, Soc. Sci. Med. 21, 1203 (1985) CrossRefGoogle Scholar
  9. 9.
    S. Eubank, H. Guclu, V.A. Kumar, M.V. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang, Nature 429, 180 (2004) CrossRefGoogle Scholar
  10. 10.
    M.E. Newman, Phys. Rev. E 66, 016128 (2002) MathSciNetCrossRefGoogle Scholar
  11. 11.
    V. Colizza, A. Barrat, M. Barthélemy, A. Vespignani, Proc. Natl. Acad. Sci. USA 103, 2015 (2006) CrossRefGoogle Scholar
  12. 12.
    S. Risau-Gusman, G. Abramson, Eur. Phys. J. B 60, 515 (2007) CrossRefGoogle Scholar
  13. 13.
    J.P. Aparicio, H.G. Solari, Math. Biosci. 169, 15 (2001) MathSciNetCrossRefGoogle Scholar
  14. 14.
    H.W. Hethcote, M.A. Lewis, P. Van Den Driessche, J. Math. Biol. 27, 49 (1989) MathSciNetCrossRefGoogle Scholar
  15. 15.
    T. Zhang, Z. Teng, Nonlinear Anal. Real World Appl. 9, 1409 (2008) MathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Wen, X. Yang, Chaos Solitons Fract. 38, 221 (2008) CrossRefGoogle Scholar
  17. 17.
    T. Zhang, J. Liu, Z. Teng, Appl. Math. Comput. 214, 624 (2009) MathSciNetGoogle Scholar
  18. 18.
    Y. Enatsu, Y. Nakata, Y. Muroya, Acta Math. Sci. 32, 851 (2012) CrossRefGoogle Scholar
  19. 19.
    H.W. Hethcote, H.W. Stech, P. Van Den Driessche, SIAM J. Appl. Math. 40, 1 (1981) MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Gonçalves, G. Abramson, M.F. Gomes, Eur. Phys. J. B 81, 363 (2011) CrossRefGoogle Scholar
  21. 21.
    K.L. Cooke, P. Van Den Driessche, J. Math. Biol. 35, 240 (1996) MathSciNetCrossRefGoogle Scholar
  22. 22.
    D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977) CrossRefGoogle Scholar
  23. 23.
    H.W. Hethcote, Math. Biosci. 28, 335 (1976) MathSciNetCrossRefGoogle Scholar
  24. 24.
    H. Stech, M. Williams, J. Math. Biol. 11, 95 (1981) MathSciNetCrossRefGoogle Scholar
  25. 25.
    F. Rozenblit, M. Copelli, J. Stat. Mech. Theory Exp. 2011, P01012 (2011) CrossRefGoogle Scholar
  26. 26.
    G. Abramson, S. Gonçalves, M.F. Gomes, arXiv:1303.3779 (2013)

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, University of BremenBremenGermany
  2. 2.Niels Bohr Institute, University of Copenhagen2100CopenhagenDenmark

Personalised recommendations