Thermal resonance and energy transport in a biharmonically driven Frenkel–Kontorova lattice

  • Mauricio Romero-BastidaEmail author
  • Santiago Guerrero-Gonzalez
Regular Article


In this work, we study the heat conduction properties of a one-dimensional Frenkel–Kontorova lattice driven by an external, time-periodic biharmonic force applied locally at one boundary and in contact with two heat reservoirs operating at different temperature by means of molecular dynamics simulations. In the single-frequency externally driven case already studied it was observed that there is a value of the driving frequency at which the heat flux takes its maximum value, a phenomenon termed as thermal resonance. It was also determined that it is possible to direct the heat flow against the imposed temperature bias by adjusting the frequency of the single harmonic driving force. With the implementation of the biharmonic forcing we have explored the temperature range at which thermal resonance effect is present. Furthermore, we have determined that by changing the relative amplitude of both harmonic components as well as the frequency of the second, taken always as a multiple, not necessarily integer, of the first one, we can adjust the frequency at which the studied effect is present in the proposed model.

Graphical abstract


Statistical and Nonlinear Physics 


  1. 1.
    M. Bencowe, Science 304, 56 (2004) CrossRefGoogle Scholar
  2. 2.
    F. Gianzotto, T.T. Hikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    M. Maldovan, Nature 503, 209 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Appl. Phys. Rev. 1, 011305 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    E.H.C. Bromley, N.J. Kuwada, M.J. Zuckermann, R. Donadini, L. Samii, G.A. Blab, G.J. Gemmen, B.J. Lopez, P.M.G. Curmi, N.R. Forde, D.N. Woolfson, H. Linke, HFSP J. 3, 204 (2009) CrossRefGoogle Scholar
  6. 6.
    H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake, N. Nakashima, J. Am. Chem. Soc. 119, 7605 (1997) CrossRefGoogle Scholar
  7. 7.
    C. Cheng, P.R. McGonigal, S.T. Schneebeli, H. Li, N.A. Vermeulen, C. Ke, J.F. Stoddart, Nat. Nanotechnol. 10, 547 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    V. Blickle, C. Bechinger, Nat. Phys. 8, 143 (2012) CrossRefGoogle Scholar
  9. 9.
    I. Bargatin, M.L. Roukes, Phys. Rev. Lett. 91, 138302 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis, A. Radenovic, Nature 536, 197 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094302 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    D. Segal, A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    L. Wang, B. Li, Phys. Rev. Lett. 99, 177208 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    L. Wang, B. Li, Phys. Rev. Lett. 101, 267203 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    D. Segal, A. Nitzan, Phys. Rev. E 73, 026109 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    F. Zhan, N. Li, S. Kohler, P. Hänggi, Phys. Rev. E 80, 061115 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    N. Li, P. Hänggi, B. Li, Europhys. Lett. 84, 40009 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    N. Li, F. Zhan, P. Hänggi, B. Li, Phys. Rev. E 80, 011125 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    B.Q. Ai, D. He, B. Hu, Phys. Rev. E 81, 031124 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    P. Reimann, Phys. Rep. 361, 57 (2002) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mauricio Romero-Bastida
    • 1
    Email author
  • Santiago Guerrero-Gonzalez
    • 1
  1. 1.SEPI ESIME-Culhuacán, Instituto Politécnico NacionalMéxicoMexico

Personalised recommendations