Energy and spin relaxations in drift transport of carriers: effects of polar optical hot phonon generation

  • M. Idrish MiahEmail author
Regular Article


We study the energy and spin relaxations in drift transport of electrons in n-doped GaAs. Stating from the rate of change of phonon occupancy in a relaxation time approximation and the electronic power dissipated in a drifted Maxwellian distribution, the hot phonon generation in high field transport and its effect in electronic spin relaxation are investigated. The scattering is confined to polar optical phonon incorporated by implementing the Ehrenreich’s variational approach in the scattering process. It is found that a finite phonon lifetime can reduce the energy relaxation rate and hence can increase the momentum relaxation rate, resulting in lowering the mobility or delaying the runaway to higher fields, where the effect increases with electron density. The electron spin is found to relax with a frequency of sub-THz, and the spin lifetime (τs) is found to decrease with increasing the strength of the drifting field. However, a high field completely depolarizes the electron spin due to an increase of the spin precession frequency of the hot electrons via the longitudinal polar optical phonon scattering. It is also found that τs increases with increasing the moderately n-doping density up to about 1 × 1017 cm−3 or decreasing the crystal temperature. However, a high density decreases it abruptly. The results are discussed on the basis of the Dyakonov–Perel (DP) spin relaxation mechanism.

Graphical abstract


Solid State and Materials 


  1. 1.
    M.I. Dyakonov, V.I. Perel, Phys. Lett. A 35, 459 (1971) ADSCrossRefGoogle Scholar
  2. 2.
    M.I. Dyakonov, A.V. Khaetskii, Spin Hall effect, in Spin Physics in Semiconductors, edited by M.I. Dyakonov (Springer, Berlin, 2008) Google Scholar
  3. 3.
    S.D. Sarma, Am. Sci. 89, 516 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    D.D. Awschalom, D. Loss, N. Samarth, Eds., Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002) Google Scholar
  5. 5.
    M. Idrish Miah, J. Optoelectron. Adv. Mater. 10, 2487 (2008) Google Scholar
  6. 6.
    J.M. Kikkawa, D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    M. Idrish Miah, Appl. Phys. Lett. 92, 092104 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    M. Idrish Miah, J. Phys. Chem. B 113, 6800 (2009) CrossRefGoogle Scholar
  9. 9.
    R.J. Elliott, Phys. Rev. 96, 266 (1954) ADSCrossRefGoogle Scholar
  10. 10.
    G.L. Bir, A.G. Aronov, G.E. Pikus, Sov. Phys. JETP 42, 705 (1976) ADSGoogle Scholar
  11. 11.
    G.E. Pikus, A.N. Titkov, in Optical Orientation, Modern Problems in Condensed Matter Science, edited by F. Meier, B.P. Zakharchenya (North-, Amsterdam, 1984), Vol. 8 Google Scholar
  12. 12.
    M. Idrish Miah, Opt. Photonics Lett. 6, 1350005 (2013) CrossRefGoogle Scholar
  13. 13.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955) ADSCrossRefGoogle Scholar
  14. 14.
    Y.A. Bychkov, E.I. Rashba, J. Phys. C: Solid State Phys. 17, 6039 (1984) ADSCrossRefGoogle Scholar
  15. 15.
    I.V. Kityk, Phys. Solid State 33, 1026 (1991) Google Scholar
  16. 16.
    S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific, Singapore, 1994) Google Scholar
  17. 17.
    E.M. Conwell, High Field Transport in Semiconductor (Academic Press, New York, 1967) Google Scholar
  18. 18.
    R. Stratton, J. Phys. Soc. Jpn. 17, 590 (1962) ADSCrossRefGoogle Scholar
  19. 19.
    J. Shah, A. Pinczuk, H.L. Stormer, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 55 (1983) ADSCrossRefGoogle Scholar
  20. 20.
    M. Lundstrom, in Fundamentals of Carrier Transport, edited by G.W. Neudeck, F.P. Pierret, Modular Series on Solid State Devices (Addison-Wesley, Boston, 1990), Vol. 10 Google Scholar
  21. 21.
    E. Ehrenreich, Phys. Rev. 120, 1951 (1960) Google Scholar
  22. 22.
    E. Ehrenreich, J. Phys. Chem. Solids 8, 130 (1959) ADSCrossRefGoogle Scholar
  23. 23.
    H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, H. Ohno, in The Second International Conference on Physics and Application of Spin Related Phenomena in Semiconductors, Würzburg, Germany, 2002 Google Scholar
  24. 24.
    A.A. Kiselev, K.W. Kim, Appl. Phys. Lett. 81, 3586 (2003) Google Scholar
  25. 25.
    M. Idrish Miah, Mater. Chem. Phys. 128, 548 (2011) CrossRefGoogle Scholar
  26. 26.
    M. Idrish Miah, E. MacA Gray, Curr. Opin. Solid State Mater. Sci. 14, 49 (2010) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ChittagongChittagongBangladesh

Personalised recommendations