Advertisement

Anomalous scaling in the Kazantsev-Kraichnan model with finite time correlations: two-loop renormalization group analysis of relevant composite operators

  • Eva Jurčišinová
  • Marian JurčišinEmail author
  • Martin Menkyna
Regular Article
  • 27 Downloads

Abstract

The field theoretic renormalization group technique together with the operator product expansion in the second order of the perturbation theory (in the two-loop approximation) is used for the investigation of the influence of the finite time correlations of the velocity field on the anomalous dimensions of the leading set of composite operators, which drive the anomalous scaling of correlation functions of a weak magnetic field in the framework of the kinematic Kazantsev–Kraichnan model in the presence of a large scale anisotropy. The system of possible scaling regimes of the model is found and two important special limits of the model are briefly discussed. The general two-loop expressions for the anomalous and critical dimensions of the leading composite operators are found as functions of the spatial dimension d and of the renormalization group fixed point value of the parameter u, which drives the presence of the finite time correlations of the velocity field in the model. The anisotropic hierarchies among various anomalous dimensions are investigated and it is shown that, regardless of the fixed point value of the parameter u as well as regardless of the spatial dimension of the system, the leading role in the anomalous scaling properties of the model is played by the anomalous dimensions of the composite operators near the isotropic shell, in accordance with the Kolmogorov’s local isotropy restoration hypothesis. The properties of the anomalous dimensions of the leading composite operators in the Kazantsev–Kraichnan model with finite time correlations of the velocity field are compared to the properties of the corresponding anomalous dimensions of the composite operators relevant in the framework of the Kraichnan model of passively advected scalar field with finite time correlations. It is shown that, regardless of the fixed point value of the parameter u, the two-loop corrections to the anomalous dimensions are much more important in the framework of the Kazantsev–Kraichnan vector model than in the Kraichnan model of a passive scalar advection. At the same time, again regardless of the strength of time correlations, the two-loop values of the leading anomalous dimensions in the Kazantsev–Kraichnan model of the passive magnetic field are significantly more negative than the corresponding two-loop values of the relevant anomalous dimensions in the framework of the Kraichnan model. It means that the anomalous scaling of the correlation functions of the passive magnetic field, deep inside the inertial interval of the turbulent environment with finite time correlations of the velocity field, must be much more pronounced than in the case of the correlation functions of the passively advected scalar field.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941) [reprinted in Proc. R. Soc. Lond. A 434, 9 1991] ADSGoogle Scholar
  2. 2.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 31, 538 (1941) Google Scholar
  3. 3.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 16 (1941) [reprinted in Proc. R. Soc. Lond. A 434, 15 1991] ADSGoogle Scholar
  4. 4.
    A.S. Monin, A.M. Yaglom, in Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1975), Vol. 2 Google Scholar
  5. 5.
    W.D. McComb, The Physics of Fluid Turbulence (Clarendon, Oxford, 1990) Google Scholar
  6. 6.
    U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995) Google Scholar
  7. 7.
    K.R. Sreenivasan, R.A. Antonia, Ann. Rev. Fluid Mech. 29, 435 (1997) ADSGoogle Scholar
  8. 8.
    G. Falkovich, K. Gawȩdzki, M. Vergassola, Rev. Mod. Phys. 73, 913 (2001) ADSGoogle Scholar
  9. 9.
    L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasil’ev, The Field Theoretic Renormalization Group in Fully Developed Turbulence (Gordon & Breach, London, 1999) Google Scholar
  10. 10.
    R.A. Antonia, B.R. Satyaprakash, A.K.F. Hussain, J. Fluid Mech. 119, 55 (1982) ADSGoogle Scholar
  11. 11.
    F. Anselmet, Y. Gagne, E. Hopfinger, R.A. Antonia, J. Fluid Mech. 140, 63 (1984) ADSGoogle Scholar
  12. 12.
    C. Meneveau, K.R. Sreenivasan, Phys. Rev. A 41, 2246 (1990) ADSGoogle Scholar
  13. 13.
    M.S. Borgas, Phys. Fluids A 4, 2055 (1992) ADSGoogle Scholar
  14. 14.
    V.R. Kuznetsov, V.A. Sabel’nikov, Turbulence and Combustion (Hemisphere Publishing, New York, 1990) Google Scholar
  15. 15.
    N.V. Antonov, J. Phys. A 39, 7825 (2006) ADSMathSciNetGoogle Scholar
  16. 16.
    R.A. Antonia, E.J. Hopfinger, Y. Gagne, F. Anselmet, Phys. Rev. A 30, 2704 (1984) ADSGoogle Scholar
  17. 17.
    K.R. Sreenivasan, Proc. R. Soc. Lond., Ser. A 434, 165 (1991) ADSGoogle Scholar
  18. 18.
    M. Holzer, E.D. Siggia, Phys. Fluids 6, 1820 (1994) ADSMathSciNetGoogle Scholar
  19. 19.
    A. Pumir, Phys. Fluids 6, 2118 (1994) ADSMathSciNetGoogle Scholar
  20. 20.
    C. Tong, Z. Warhaft, Phys. Fluids 6, 2165 (1994) ADSGoogle Scholar
  21. 21.
    T. Elperin, N. Kleeorin, I. Rogachevskii, Phys. Rev. E 52, 2617 (1995) ADSMathSciNetGoogle Scholar
  22. 22.
    T. Elperin, N. Kleeorin, I. Rogachevskii, Phys. Rev. Lett. 76, 224 (1996) ADSGoogle Scholar
  23. 23.
    T. Elperin, N. Kleeorin, I. Rogachevskii, Phys. Rev. E 53, 3431 (1996) ADSMathSciNetGoogle Scholar
  24. 24.
    Z. Warhaft, Ann. Rev. Fluid Mech. 32, 203 (2000) ADSMathSciNetGoogle Scholar
  25. 25.
    B.I. Shraiman, E. Siggia, Nature 405, 639 (2000) ADSGoogle Scholar
  26. 26.
    F. Moisy, H. Willaime, J.S. Andersen, P. Tabeling, Phys. Rev. Lett. 86, 4827 (2001) ADSGoogle Scholar
  27. 27.
    A. Arnèodo et al., Phys. Rev. Lett. 100, 254504 (2008) ADSGoogle Scholar
  28. 28.
    M. Vergassola, Phys. Rev. E 53, R3021 (1996) ADSGoogle Scholar
  29. 29.
    K. Gawȩdzki, A. Kupiainen, Phys. Rev. Lett. 75, 3834 (1995) ADSGoogle Scholar
  30. 30.
    D. Bernard, K. Gawȩdzki, A. Kupiainen, Phys. Rev. E 54, 2564 (1996) ADSMathSciNetGoogle Scholar
  31. 31.
    M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. E 52, 4924 (1995) ADSMathSciNetGoogle Scholar
  32. 32.
    M. Chertkov, G. Falkovich, Phys. Rev. Lett. 76, 2706 (1996) ADSGoogle Scholar
  33. 33.
    M. Avellaneda, A. Majda, Commun. Math. Phys. 131, 381 (1990) ADSGoogle Scholar
  34. 34.
    M. Avellaneda, A. Majda, Commun. Math. Phys. 146, 139 (1992) ADSGoogle Scholar
  35. 35.
    A. Majda, J. Stat. Phys. 73, 515 (1993) ADSGoogle Scholar
  36. 36.
    D. Horntrop, A. Majda, J. Math. Sci. Univ. Tokyo 1, 23 (1994) MathSciNetGoogle Scholar
  37. 37.
    Q. Zhang, J. Glimm, Commun. Math. Phys. 146, 217 (1992) ADSGoogle Scholar
  38. 38.
    R.H. Kraichnan, Phys. Rev. Lett. 72, 1016 (1994) ADSGoogle Scholar
  39. 39.
    R.H. Kraichnan, V. Yakhot, S. Chen, Phys. Rev. Lett. 75, 240 (1995) ADSGoogle Scholar
  40. 40.
    B.I. Shraiman, E.D. Siggia, Phys. Rev. Lett. 77, 2463 (1996) ADSGoogle Scholar
  41. 41.
    A. Pumir, B.I. Shraiman, E.D. Siggia, Phys. Rev. E 55, R1263 (1997) ADSGoogle Scholar
  42. 42.
    A. Pumir, Europhys. Lett. 34, 25 (1996) ADSGoogle Scholar
  43. 43.
    A. Pumir, Europhys. Lett. 37, 529 (1997) ADSGoogle Scholar
  44. 44.
    A. Pumir, Phys. Rev. E 57, 2914 (1998) ADSMathSciNetGoogle Scholar
  45. 45.
    I. Rogachevskii, N. Kleeorin, Phys. Rev. E 56, 417 (1997) ADSGoogle Scholar
  46. 46.
    A. Lanotte, A. Mazzino, Phys. Rev. E 60, R3483 (1999) ADSGoogle Scholar
  47. 47.
    I. Arad, L. Biferale, I. Procaccia, Phys. Rev. E 61, 2654 (2000) ADSGoogle Scholar
  48. 48.
    N.V. Antonov, A. Lanotte, A. Mazzino, Phys. Rev. E 61, 6586 (2000) ADSGoogle Scholar
  49. 49.
    N.V. Antonov, J. Honkonen, A. Mazzino, P. Muratore-Ginanneschi, Phys. Rev. E 62, R5891 (2000) ADSGoogle Scholar
  50. 50.
    N.V. Antonov, M. Hnatich, J. Honkonen, M. Jurčišin, Phys. Rev. E 68, 046306 (2003) ADSGoogle Scholar
  51. 51.
    M. Chaves, K. Gawȩdzki, P. Horvai, A. Kupiainen, M. Vergassola, J. Stat. Phys. 113, 643 (2003) Google Scholar
  52. 52.
    H. Arponen, Phys. Rev. E 81, 036325 (2010) ADSGoogle Scholar
  53. 53.
    R.H. Kraichnan, Phys. Fluids 11, 945 (1968) ADSGoogle Scholar
  54. 54.
    A.P. Kazantsev, Sov. Phys. JETP 26, 1031 (1968) ADSGoogle Scholar
  55. 55.
    D.J. Amit, Field Theory, Renormalization Group, and Critical Phenomena (McGraw-Hill, New York, 1978) Google Scholar
  56. 56.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1989) Google Scholar
  57. 57.
    A.N. Vasil’ev, Quantum-Field Renormalization Group in the Theory of Critical Phenomena and Stochastic Dynamics (Chapman & Hall/CRC, Boca Raton, 2004) Google Scholar
  58. 58.
    D.J. Amit, V. Martin-Mayor, Field Theory, Renormalization Group, and Critical Phenomena. Graphs to Computers, 3rd edn. (World Scientific, Singapore, 2005) Google Scholar
  59. 59.
    L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasil’ev, Phys. Rev. E 58, 1823 (1998) ADSMathSciNetGoogle Scholar
  60. 60.
    L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasil’ev, Theor. Math. Phys. 120, 1074 (1999) Google Scholar
  61. 61.
    L.Ts. Adzhemyan, N.V. Antonov, V.A. Barinov, Yu.S. Kabrits, A.N. Vasil’ev, Phys. Rev. E 63, 025303 (2001) ADSGoogle Scholar
  62. 62.
    L.Ts. Adzhemyan, N.V. Antonov, V.A. Barinov, Yu.S. Kabrits, A.N. Vasil’ev, Phys. Rev. E 64, 056306 (2001) ADSGoogle Scholar
  63. 63.
    L.Ts. Adzhemyan, N.V. Antonov, M. Hnatich, S.V. Novikov, Phys. Rev. E 63, 016309 (2000) ADSGoogle Scholar
  64. 64.
    E. Jurčišinová, M. Jurčišin, R. Remecký, M. Scholtz, Int. J. Mod. Phys. B 22, 3589 (2008) ADSGoogle Scholar
  65. 65.
    E. Jurčišinová, M. Jurčišin, Phys. Rev. E 77, 016306 (2008) ADSMathSciNetGoogle Scholar
  66. 66.
    N.V. Antonov, Phys. Rev. E 60, 6691 (1999) ADSMathSciNetGoogle Scholar
  67. 67.
    L.Ts. Adzhemyan, N.V. Antonov, J. Honkonen, Phys. Rev. E 66, 036313 (2002) ADSGoogle Scholar
  68. 68.
    L.Ts. Adzhemyan, N.V. Antonov, Phys. Rev. E 58, 7381 (1998) ADSMathSciNetGoogle Scholar
  69. 69.
    N.V. Antonov, J. Honkonen, Phys. Rev. E 63, 036302 (2001) ADSGoogle Scholar
  70. 70.
    O.G. Chkhetiani, M. Hnatich, E. Jurčišinová, M. Jurčišin, A. Mazzino, M. Repašan, Phys. Rev. E 74, 036310 (2006) ADSMathSciNetGoogle Scholar
  71. 71.
    O.G. Chkhetiani, M. Hnatich, E. Jurčišinová, M. Jurčišin, A. Mazzino, M. Repašan, J. Phys. A: Math. Gen. 39, 7913 (2006) ADSGoogle Scholar
  72. 72.
    O.G. Chkhetiani, M. Hnatich, E. Jurčišinová, M. Jurčišin, A. Mazzino, M. Repašan, Czech. J. Phys. 56 (2006) 827 ADSGoogle Scholar
  73. 73.
    L.Ts. Adzhemyan, N.V. Antonov, J. Honkonen, T.L. Kim, Phys. Rev. E 71, 016303 (2005) ADSMathSciNetGoogle Scholar
  74. 74.
    A.V. Gladysheva, E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Part. Nucl. 41, 1023 (2010) Google Scholar
  75. 75.
    E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Rev. E 80, 046302 (2009) ADSGoogle Scholar
  76. 76.
    N.V. Antonov, N.M. Gulitskiy, M.M. Kostenko, A.V. Malyshev, Phys. Rev. E 97, 033101 (2018) ADSMathSciNetGoogle Scholar
  77. 77.
    L.Ts. Adzhemyan, N.V. Antonov, A.V. Runov, Phys. Rev. E 64, 046310 (2001) ADSGoogle Scholar
  78. 78.
    M. Hnatič, M. Jurčišin, A. Mazzino, S. Šprinc, Acta Phys. Slov. 52, 559 (2002) Google Scholar
  79. 79.
    S.V. Novikov, J. Phys. A: Math. Gen. 39, 8133 (2006) ADSGoogle Scholar
  80. 80.
    E. Jurčišinová, M. Jurčišin, R. Remecký, M. Scholtz, Phys. Part. Nucl. Lett. 5, 219 (2008) Google Scholar
  81. 81.
    E. Jurčišinová, M. Jurčišin, R. Remecký, J. Phys. A: Math. Theor. 42, 275501 (2009) Google Scholar
  82. 82.
    N.V. Antonov, N.M. Gulitskiy, Theor. Math. Phys. 176, 851 (2013) Google Scholar
  83. 83.
    L.Ts. Adzhemyan, N.V. Antonov, P.B. Gol’din, M.V. Kompaniets, J. Phys. A: Math. Theor. 46, 135002 (2013) ADSGoogle Scholar
  84. 84.
    N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 91, 013002 (2015) ADSGoogle Scholar
  85. 85.
    N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 92, 043018 (2015) ADSGoogle Scholar
  86. 86.
    N.V. Antonov, M.M. Kostenko, Phys. Rev. E 92, 053013 (2015) ADSMathSciNetGoogle Scholar
  87. 87.
    N.V. Antonov, N.M. Gulitskiy, EPJ Web Conf. 108, 02008 (2016) Google Scholar
  88. 88.
    M. Hnatich, J. Honkonen, M. Jurčišin, A. Mazzino, S. Šprinc, Phys. Rev. E 71, 066312 (2005) ADSGoogle Scholar
  89. 89.
    N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 85, 065301 (2012) ADSGoogle Scholar
  90. 90.
    N.V. Antonov, N.M. Gulitskiy, Lecture Notes Comput. Sci. 7125, 128 (2012) Google Scholar
  91. 91.
    E. Jurčišinová, M. Jurčišin, J. Phys. A: Math. Theor. 45, 485501 (2012) Google Scholar
  92. 92.
    E. Jurčišinová, M. Jurčišin, Phys. Rev. E 88, 011004 (2013)(R) ADSGoogle Scholar
  93. 93.
    E. Jurčišinová, M. Jurčišin, Phys. Rev. E 91, 063009 (2015) ADSMathSciNetGoogle Scholar
  94. 94.
    E. Jurčišinová, M. Jurčišin, M. Menkyna, Phys. Rev. E 95, 053210 (2017) ADSGoogle Scholar
  95. 95.
    M. Chertkov, G. Falkovich, V. Lebedev, Phys. Rev. Lett. 76, 3707 (1996) ADSGoogle Scholar
  96. 96.
    G. Eyink, Phys. Rev. E 54, 1497 (1996) ADSGoogle Scholar
  97. 97.
    J.P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal, J. Phys. (Paris) 48, 1445 (1987) Google Scholar
  98. 98.
    J.P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal, J. Phys. (Paris) 49, 369 (1988) Google Scholar
  99. 99.
    J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990) ADSMathSciNetGoogle Scholar
  100. 100.
    J. Honkonen, E. Karjalainen, J. Phys. A 21, 4217 (1988) ADSGoogle Scholar
  101. 101.
    J. Honkonen, Yu.M. Pis’mak, A.N. Vasil’ev, J. Phys. A 21, L835 (1989) Google Scholar
  102. 102.
    J. Honkonen, Yu. M. Pis’mak, J. Phys. A 22, L899 (1989) Google Scholar
  103. 103.
    J.D. Fournier, P.L. Sulem, A. Pouquet, J. Phys. A 15, 1393 (1982) ADSGoogle Scholar
  104. 104.
    L.Ts. Adzhemyan, A.N. Vasil’ev, M. Gnatich, Theor. Math. Phys. 64, 777 (1985) Google Scholar
  105. 105.
    P.C. Martin, E.D. Siggia, H.A. Rose, Phys. Rev. A 8, 423 (1973) ADSGoogle Scholar
  106. 106.
    C. De Dominicis, J. Phys. (Paris), Colloq. 37, C1–247 (1976) ADSGoogle Scholar
  107. 107.
    H.K. Janssen, Z. Phys. B 23, 377 (1976) ADSGoogle Scholar
  108. 108.
    R. Bausch, H.K. Janssen, H. Wagner, Z. Phys. B 24, 113 (1976) ADSGoogle Scholar
  109. 109.
    E. Jurčišinová, M. Jurčišin, Phys. Part. Nucl. 44, 360 (2013) Google Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Eva Jurčišinová
    • 1
    • 2
  • Marian Jurčišin
    • 1
    • 2
    • 3
    Email author
  • Martin Menkyna
    • 1
    • 2
  1. 1.Institute of Experimental Physics, Slovak Academy of SciencesKošiceSlovakia
  2. 2.Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear ResearchDubna, MoscowRussia
  3. 3.Department of Theoretical Physics and AstrophysicsFaculty of Science, P.J. Šafárik UniversityKošiceSlovakia

Personalised recommendations