Advertisement

Dissipation and irreversibility in a solvable classical open system

Electron in a dc field interacting with LO/LA phonons
  • Ladislaus Alexander BányaiEmail author
Regular Article
  • 8 Downloads
Part of the following topical collections:
  1. Topical issue: Non-Linear and Complex Dynamics in Semiconductors and Related Materials

Abstract

The classical model of an electron in a dc electric field interacting with longitudinal acoustical (LA)/optical (LO) phonons (with an infinite number of degrees of freedom) is discussed. We show the irreversible (dissipative) asymptotic behavior of the electron (finite subsystem) as an open classical system, although the whole system is time-reversal invariant. The problem is solvable numerically without other approximations, or limits. Below a certain critical electric field (and below a critical initial velocity) an asymptotic motion of the electron with a constant velocity emerges, while above the critical field it is the usual accelerated motion. In the absence of the field, the state of vanishing velocity is stable in its vicinity in the LA case, while in the LO case it might also be a steady oscillatory motion. The field-dependence of the asymptotic velocity is linear in the LA case, while it is highly non-linear for LO.

Graphical abstract

References

  1. 1.
    H. Spohn, Rev. Mod. Phys. 53, 569 (1980) ADSCrossRefGoogle Scholar
  2. 2.
    N. Linder, S. Popescu, A.J. Short, A. Winter, Phys. Rev. R 79, 061103 (2009) ADSGoogle Scholar
  3. 3.
    H. Breuer, F. Petruccione, The Theory of Open Quantum Systema (Oxford University Press, Oxford, 2002) Google Scholar
  4. 4.
    A. Attal, A. Joye, C.A. Pillet Eds., Open Quantum System IÍ (Springer, Berlin, Heidelberg, 2006) Google Scholar
  5. 5.
    A. Rivas, S.F. Huelga, Open Quantum Systems: An Introduction (Springer, Berlin, Heidelberg, 2012) Google Scholar
  6. 6.
    G. Schaller, Open Quantum Systems Far from Equilibrium (Springer, Berlin, Heidelberg, 2014) Google Scholar
  7. 7.
    A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983) ADSCrossRefGoogle Scholar
  8. 8.
    W. Magnus, W. Schoenemaker, Phys. Rev. 47, 1276 (1993) ADSCrossRefGoogle Scholar
  9. 9.
    L.A. Bányai, Phys. Rev. Lett. 70, 1676 (1993) CrossRefGoogle Scholar
  10. 10.
    L.A. Bányai, Lectures on Non-Equilibrium Theory of Condensed Matter (World Scientific, Singapore, 2006) Google Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Johann Wolfgang Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations