Advertisement

Synchronization patterns in LIF neuron networks: merging nonlocal and diagonal connectivity

  • Nefeli-Dimitra Tsigkri-DeSmedt
  • Ioannis Koulierakis
  • Georgios Karakos
  • Astero ProvataEmail author
Regular Article

Abstract

The effects of nonlocal and reflecting connectivities have been previously investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which assimilate the exchange of electrical signals between neurons. In this work, we investigate the effect of diagonal coupling inspired by findings in brain neuron connectivity. Multi-chimera states are reported both for the simple diagonal and combined nonlocal–diagonal connectivities, and we determine the range of optimal parameter regions where chimera states appear. Overall, the measures of coherence indicate that as the coupling range increases (below all-to-all coupling) the emergence of chimera states is favored and the mean phase velocity deviations between coherent and incoherent regions become more prominent. A number of novel synchronization phenomena are induced as a result of the combined connectivity. We record that for coupling strengths σ < 1 the synchronous regions have mean phase velocities lower than the asynchronous, while the opposite holds for σ > 1. In the intermediate regime, σ ~ 1, the oscillators have common mean phase velocity (i.e., are frequency-locked) but different phases (i.e., they are phase-asynchronous). Solitary states are recorded for small values of the coupling strength, which grow into chimera states as the coupling strength increases. We determine parameter values where the combined effects of nonlocal and diagonal coupling generate chimera states with two different levels of synchronous domains mediated by asynchronous regions.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E.S. Finn et al., Nat. Neurosci. 18, 1664 (2016) CrossRefGoogle Scholar
  2. 2.
    N.K. Logothetis, Nature 453, 869 (2008) CrossRefGoogle Scholar
  3. 3.
    R.A. Poldrack, M.J. Farah, Nature 526, 371 (2015) CrossRefGoogle Scholar
  4. 4.
    C. Vasalou, E.D. Herzog, M.A. Henson, J. Biol. Rhythms 24, 243 (2009) CrossRefGoogle Scholar
  5. 5.
    W.-K. Li, M.J. Hausknecht, P. Stone, M.D. Mauk, Neural Netw. 47, 95 (2013) CrossRefGoogle Scholar
  6. 6.
    A. Alonso, R.R. Llinas, Nature 342, 175 (1989) CrossRefGoogle Scholar
  7. 7.
    S.R. Cobb, E.H. Buhl, K. Halasy, O. Paulsen, P. Somogyi, Nature 378, 75 (1995) CrossRefGoogle Scholar
  8. 8.
    V. Vuksanović, P. Hövel, NeuroImage 97, 1 (2014) CrossRefGoogle Scholar
  9. 9.
    V. Vuksanović, P. Hövel, Chaos 25, 023116 (2015) MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Katsaloulis, D.A. Verganelakis, A. Provata, Fractals 17, 181 (2009) CrossRefGoogle Scholar
  11. 11.
    P. Expert, R. Lambiotte, D. Chialvo, K. Christensen, H.J. Jensen, D.J. Sharp, F. Turkheimer, J. R. Soc. Interface 8, 472 (2011) CrossRefGoogle Scholar
  12. 12.
    F. Mormann, K. Lehnertz, P. David, C.E. Elger, Physica D 144, 358 (2000) CrossRefGoogle Scholar
  13. 13.
    F. Mormann, T. Kreuz, R.G. Andrzejak, P. David, K. Lehnertz, C.E. Elger, Epilepsy Res. 53, 173 (2003) CrossRefGoogle Scholar
  14. 14.
    P. Katsaloulis, A. Ghosh, A.C. Philippe, A. Provata, R. Deriche, Eur. Phys. J. B 85, 150 (2012) CrossRefGoogle Scholar
  15. 15.
    H. Haken, Brain Dynamics, An Introduction to Models and Simulations, Springer Series on Synergetics (Springer-Verlag, Berlin, 2008) Google Scholar
  16. 16.
    E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (The MIT Press, Cambridge, 2007) Google Scholar
  17. 17.
    C. Wang, J. Ma, Int. J. Mod. Phys. B 32, 1830003 (2018) CrossRefGoogle Scholar
  18. 18.
    S. Guo, Y. Xu, C. Wang, W. Jin, A. Hobiny, J. Ma, Chaos Soliton. Fract. 105, 120 (2017) CrossRefGoogle Scholar
  19. 19.
    M. Lv, J. Ma, Y. Yao, F. Alzahrani, Sci. China Technol. Sci. (2018),  https://doi.org/10.1007/s11431-018-9268-2
  20. 20.
    M.J. Panaggio, D. Abrams, Nonlinearity 28, R67 (2015) CrossRefGoogle Scholar
  21. 21.
    E. Schöll, Eur. Phys. J. Special Topics 225, 891 (2016) CrossRefGoogle Scholar
  22. 22.
    S. Majhi, M. Perc, D. Ghosh, Sci. Rep. 6, 39033 (2016) CrossRefGoogle Scholar
  23. 23.
    S. Majhi, M. Perc, D. Ghosh, Chaos 27, 073109 (2017) MathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Hizanidis, N.E. Kouvaris, G. Zamora-López, A. Díaz-Guilera, C.G. Antonopoulos, Sci. Rep. 6, 19845 (2016) CrossRefGoogle Scholar
  25. 25.
    Y. Zhu, Z. Zheng, J. Yang, Phys. Rev. E 89, 022914 (2014) CrossRefGoogle Scholar
  26. 26.
    I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Phys. Rev. E 91, 022917 (2015) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002) Google Scholar
  28. 28.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004) CrossRefGoogle Scholar
  29. 29.
    N.C. Rattenborg, C.J. Amlaner, S.L. Lima, Neurosci. Biobehav. Rev. 24, 817 (2000) CrossRefGoogle Scholar
  30. 30.
    J. Hizanidis, V. Kanas, A. Bezerianos, T. Bountis, Int. J. Bifurc. Chaos 24, 03 (2014) CrossRefGoogle Scholar
  31. 31.
    B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 93, 012205 (2016) MathSciNetCrossRefGoogle Scholar
  32. 32.
    R.G. Andrzejak, C. Rummel, F. Mormann, K. Schindler, Sci. Rep. 6, 23000 (2016) CrossRefGoogle Scholar
  33. 33.
    Q. Dai, D. Liu, H. Cheng, H. Li, J. Yang, PLoS One 12, e0187067 (2017) CrossRefGoogle Scholar
  34. 34.
    Z.-M. Wu, H.-Y. Cheng, Y. Feng, H.-H. Li, Q.-L. Dai, J.-Z. Yang, Front. Phys. 13, 130503 (2018) CrossRefGoogle Scholar
  35. 35.
    I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 110, 224101 (2013) CrossRefGoogle Scholar
  36. 36.
    A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Phys. Rev. E 95, 032224 (2017) MathSciNetCrossRefGoogle Scholar
  37. 37.
    E.M. Essaki Arumugam, M.L. Spano, Chaos 25, 1.4905856 (2015) CrossRefGoogle Scholar
  38. 38.
    B.K. Bera, D. Ghosh, Phys. Rev. E 93, 052223 (2016) MathSciNetCrossRefGoogle Scholar
  39. 39.
    B.K. Bera, S. Majhi, D. Ghosh, M. Perc, Eur. Lett. 118, 10001 (2017) CrossRefGoogle Scholar
  40. 40.
    S. Kundu, S. Majhi, B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 97, 022201 (2018) MathSciNetCrossRefGoogle Scholar
  41. 41.
    S. Majhi, D. Ghosh, Chaos 28, 083113 (2018) MathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Lucioli, A. Politi, Phys. Rev. E 105, 158104 (2010) Google Scholar
  43. 43.
    S. Olmi, A. Politi, A. Torcini, Europhys. Lett. 92, 60007 (2010) CrossRefGoogle Scholar
  44. 44.
    N.D. Tsigkri-DeSmedt, J. Hizanidis, P. Hövel, A. Provata, Proc. Comput. Sci. 66, 13 (2015) CrossRefGoogle Scholar
  45. 45.
    N.D. Tsigkri-DeSmedt, J. Hizanidis, E. Schöll, P. Hövel, A. Provata, Eur. Phys. J. B 90, 139 (2017) CrossRefGoogle Scholar
  46. 46.
    T. Kasimatis, J. Hizanidis, A. Provata, Phys. Rev. E 97, 052213 (2018) MathSciNetCrossRefGoogle Scholar
  47. 47.
    Y. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko, New J. Phys. 17, 073037 (2015) CrossRefGoogle Scholar
  48. 48.
    V. Maistrenko, O. Sudakov, O. Osiv, Y. Maistrenko, Eur. Phys. J. Special Topics 226, 1867 (2017) CrossRefGoogle Scholar
  49. 49.
    N.D. Tsigkri-DeSmedt, J. Hizanidis, P. Hövel, A. Provata, Eur. Phys. J. Special Topics 225, 1149 (2016) CrossRefGoogle Scholar
  50. 50.
    I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011) CrossRefGoogle Scholar
  51. 51.
    N. Brunel, M.C.W. van Rossum, Brain Res. Bull. 50, 303 (1999) CrossRefGoogle Scholar
  52. 52.
    L.F. Abott, Biol. Cybern. 97, 337 (2007) CrossRefGoogle Scholar
  53. 53.
    I. Omelchenko, A. Zakharova, P. Höevel, J. Siebert, E. Schöll, Chaos 25, 083104 (2015) MathSciNetCrossRefGoogle Scholar
  54. 54.
    J. Hizanidis, E. Panagakou, I. Omelchenko, E. Schöll, P. Hövel, A. Provata, Phys. Rev. E 92, 012915 (2015) MathSciNetCrossRefGoogle Scholar
  55. 55.
    T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko, Sci. Rep. 4, 6379 (2014) CrossRefGoogle Scholar
  56. 56.
    K. Premalatha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 94, 012311 (2016) CrossRefGoogle Scholar
  57. 57.
    P. Jaros, S. Brezetsky, R. Levchenko, D. Dudkowski, T. Kapitaniak, Y. Maistrenko, Chaos 28, 011103 (2018) MathSciNetCrossRefGoogle Scholar
  58. 58.
    R. Gopal, V.K. Chandrasekar, D.V. Senthilkumar, A. Venkatesan, M. Lakshmanan, Commun. Nonlinear Sci. Numerical Simul. 59, 30 (2018) MathSciNetCrossRefGoogle Scholar
  59. 59.
    F.-Q. Wu, J. Ma, G.-D. Ren, J. Zhejiang Univ. Sci. A (2018),  https://doi.org/10.1631/jzus.A1800334

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”AthensGreece
  2. 2.Section of Solid State Physics, Department of Physics, National and Kapodistrian University of AthensAthensGreece
  3. 3.School of Electrical and Computer Engineering, National Technical University of AthensAthensGreece

Personalised recommendations