Advertisement

Momentum-induced Zitterbewegung of massless relativistic quasiparticles emreged in an optical lattice

  • Shan Yang
  • Shan-Chao Zhang
  • Guan-Qiang Li
  • Zhi LiEmail author
Regular Article
  • 20 Downloads

Abstract

We have investigated dynamic characteristics of massless Dirac and hybrid quasiparticles in an optical lattice. Zitterbewegung (ZB) of the quasiparticles has been realized and well manipulated. The results reveal that massless Dirac quasiparticles can also generate ZB oscillation, only with an initial velocity being introduced to the quasiparticles as the price to pay. Besides, we noticed an essential distinction between this momentum-induced ZB and an ordinary ZB generated by massive Dirac particles, i.e., instead of all directions, ZB induced by momentum in a 2D system will emerge exclusively in the direction orthogonal to where the momentum is introduced. On the other hand, momentum-induced ZB will be attenuated more rapidly since the initial momentum causes greater expansion rate of wave packets. Therefore, an optimal range of parameters is necessary in detecting such ZB. We have confidence that momentum-induced ZB for massless Dirac quasiparticles will be observed in the near future since the frequency, amplitude and lifespan of ZB can now be controlled in a detectable range in the cold atom system.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24, 418 (1930) Google Scholar
  2. 2.
    D. Hestenes, Front. Phys. 20, 10 (1990) MathSciNetGoogle Scholar
  3. 3.
    R.P. Feynman, Int. J. Theor. Phys. 21, 6 (1982) CrossRefGoogle Scholar
  4. 4.
    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Nature (London) 463, 68 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    X. Zhang, Phys. Rev. Lett. 100, 113903 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, A. Szameit, Phys. Rev. Lett. 105, 143902 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Q. Zhang, J.B. Gong, C.H. Oh, Phys. Rev. A 81, 023608 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    L.J. LeBlanc, M.C. Beeler, K. Jimenez-Garcia, A.R. Perry, S. Sugawa, R.A. Williams, I.B. Spielman, New J. Phys. 15, 073011 (2013) CrossRefGoogle Scholar
  9. 9.
    C. Qu, C. Hamner, M. Gong, C. Zhang, P. Engels, Phys. Rev. A 88, 021604(R) (2013) ADSCrossRefGoogle Scholar
  10. 10.
    T.M. Rusin, W. Zawadzki, Phys. Rev. B 76, 195439 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    J.Y. Vaishnav, C.W. Clark, Phys. Rev. Lett. 100, 153002 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    J. Larson, J.P. Martikainen, A. Collin, E. Sjöqvist, Phys. Rev. A 82, 043620 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    W. Zawadzki, T.M. Rusin, J. Phys.: Condens. Matter 23, 143201 (2011) ADSGoogle Scholar
  14. 14.
    Z. Li, H. Cao, L.B. Fu, Phys. Rev. A 91, 023623 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    J. Cserti, G. David, Phys. Rev. B 74, 172305 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    X. Wan, A.M. Turner, A. Vishwannath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, C. Zhang, R. Sankar, S.M. Huang, C.C. Lee, G. Chang, B.K. Wang, G. Bian, H. Zheng, D.S. Sanchez, F. Chou, H. Lin, S. Jia, M.Z. Hasan, Science 347, 294 (2015) ADSCrossRefGoogle Scholar
  19. 19.
    S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.C. Lee, S.M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Science 349, 613 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    X.C. Huang, L.X. Zhao, Y.J. Long, P.P. Wang, D. Chen, Z.H. Yang, H. Liang, M.Q. Xue, H.M. Weng, Z. Fang, X. Dai, G.F. Chen, Phys. Rev. X 5, 031023 (2015) Google Scholar
  21. 21.
    T. Dubcek, C.J. Kennedy, L. Lu, W. Ketterle, M. Soljacic, H. Buljan, Phys. Rev. Lett. 114, 225301 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    D.-W. Zhang, S.-L. Zhu, Z.D. Wang, Phys. Rev. A 92, 013632 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    W.-Y. He, S. Zhang, K.T. Law, Phys. Rev. A 94, 013606 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    Z. Li, H.-Q. Wang, D.-W. Zhang, S.-L. Zhu, D.-Y. Xing, Phys. Rev. A 94, 043617 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    D.-W. Zhang, R.-B. Liu, S.-L. Zhu, Phys. Rev. A 95, 043619 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    T. Bzdušek, Q.-S. Wu, A. Rüegg, M. Sigrist, A.A. Soluyanov, Nature (London) 538, 75 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    Z. Yan, Z. Wang, Phys. Rev. Lett. 117, 087402 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    D.-W. Zhang, Y.X. Zhao, R.-B. Liu, Z.-Y. Xue, S.-L. Zhu, Z.D. Wang, Phys. Rev. A 93, 087402 (2016) Google Scholar
  29. 29.
    Y.-Q. Zhu, D.-W. Zhang, H. Yan, D.-Y. Xing, S.-L. Zhu, Phys. Rev. A 96, 033634 (2017) ADSCrossRefGoogle Scholar
  30. 30.
    X. Tan, D.-W. Zhang, Q. Liu, G. Xue, H.-F. Yu, Y.-Q. Zhu, H. Yan, S.-L. Zhu, Y. Yu, Phys. Rev. Lett. 120, 130503 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    L. Liang, Y. Yu, Phys. Rev. A 93, 045113 (2016) ADSCrossRefGoogle Scholar
  32. 32.
    P. Tang, Q. Zhou, S.-C. Zhang, Phys. Rev. Lett. 119, 206402 (2017) ADSCrossRefGoogle Scholar
  33. 33.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornel, Science 269, 5221 (1995) Google Scholar
  34. 34.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995) ADSCrossRefGoogle Scholar
  35. 35.
    S.-L. Zhu, B. Wang, L.-M. Duan, Phys. Rev. Lett. 98, 260402 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, K. Sengstock, Nat. Phys. 7, 434 (2011) CrossRefGoogle Scholar
  37. 37.
    P. Soltan-Panahi, D.-S. Lühmann, J. Struck, P. Windpassinger, K. Sengstock, Nat. Phys. 8, 71 (2012) CrossRefGoogle Scholar
  38. 38.
    Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, J.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, J.-W. Pan, Science 354, 83 (2016) ADSCrossRefGoogle Scholar
  39. 39.
    D.W. Zhang, Z.D. Wang, S.L. Zhu, Front. Phys. 7, 31 (2012) CrossRefGoogle Scholar
  40. 40.
    V. Galitski, I.B. Spielman, Nature (London) 494, 49 (2013) ADSCrossRefGoogle Scholar
  41. 41.
    H. Zhai, Rep. Prog. Phys. 78, 026001 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    X.-J. Liu, K.T. Law, T.K. Ng, Phys. Rev. Lett. 112, 086401 (2014) ADSCrossRefGoogle Scholar
  43. 43.
    S.-L. Zhu, H. Fu, C.-J. Wu, S.-C. Zhang, L.-M. Duan, Phys. Rev. Lett. 97, 240401 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    S.-L. Zhu, D.-W. Zhang, Z.D. Wang, Phys. Rev. Lett. 102, 210403 (2009) ADSCrossRefGoogle Scholar
  45. 45.
    X. Shen, Z. Li, Phys. Rev. A 97, 013608 (2018) ADSCrossRefGoogle Scholar
  46. 46.
    L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger, Nature (London) 483, 302 (2012) ADSCrossRefGoogle Scholar
  47. 47.
    L.-K. Lim, J.N. Fuchs, G. Montambaux, Phys. Rev. Lett. 108, 175303 (2012) ADSCrossRefGoogle Scholar
  48. 48.
    M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013) ADSCrossRefGoogle Scholar
  49. 49.
    P. Windpassinger, K. Sengstock, Rep. Prog. Phys. 76, 086401 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shan Yang
    • 1
  • Shan-Chao Zhang
    • 1
  • Guan-Qiang Li
    • 2
  • Zhi Li
    • 1
    Email author
  1. 1.Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal UniversityGuangzhouP.R. China
  2. 2.School of Arts and Sciences, Shaanxi University of Science and TechnologyXi’anP.R. China

Personalised recommendations