Advertisement

Momentum-induced Zitterbewegung of massless relativistic quasiparticles emreged in an optical lattice

  • Shan Yang
  • Shan-Chao Zhang
  • Guan-Qiang Li
  • Zhi LiEmail author
Regular Article
  • 41 Downloads

Abstract

We have investigated dynamic characteristics of massless Dirac and hybrid quasiparticles in an optical lattice. Zitterbewegung (ZB) of the quasiparticles has been realized and well manipulated. The results reveal that massless Dirac quasiparticles can also generate ZB oscillation, only with an initial velocity being introduced to the quasiparticles as the price to pay. Besides, we noticed an essential distinction between this momentum-induced ZB and an ordinary ZB generated by massive Dirac particles, i.e., instead of all directions, ZB induced by momentum in a 2D system will emerge exclusively in the direction orthogonal to where the momentum is introduced. On the other hand, momentum-induced ZB will be attenuated more rapidly since the initial momentum causes greater expansion rate of wave packets. Therefore, an optimal range of parameters is necessary in detecting such ZB. We have confidence that momentum-induced ZB for massless Dirac quasiparticles will be observed in the near future since the frequency, amplitude and lifespan of ZB can now be controlled in a detectable range in the cold atom system.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24, 418 (1930) Google Scholar
  2. 2.
    D. Hestenes, Front. Phys. 20, 10 (1990) MathSciNetGoogle Scholar
  3. 3.
    R.P. Feynman, Int. J. Theor. Phys. 21, 6 (1982) CrossRefGoogle Scholar
  4. 4.
    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Nature (London) 463, 68 (2010) CrossRefGoogle Scholar
  5. 5.
    X. Zhang, Phys. Rev. Lett. 100, 113903 (2008) CrossRefGoogle Scholar
  6. 6.
    F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, A. Szameit, Phys. Rev. Lett. 105, 143902 (2010) CrossRefGoogle Scholar
  7. 7.
    Q. Zhang, J.B. Gong, C.H. Oh, Phys. Rev. A 81, 023608 (2010) CrossRefGoogle Scholar
  8. 8.
    L.J. LeBlanc, M.C. Beeler, K. Jimenez-Garcia, A.R. Perry, S. Sugawa, R.A. Williams, I.B. Spielman, New J. Phys. 15, 073011 (2013) CrossRefGoogle Scholar
  9. 9.
    C. Qu, C. Hamner, M. Gong, C. Zhang, P. Engels, Phys. Rev. A 88, 021604(R) (2013) CrossRefGoogle Scholar
  10. 10.
    T.M. Rusin, W. Zawadzki, Phys. Rev. B 76, 195439 (2007) CrossRefGoogle Scholar
  11. 11.
    J.Y. Vaishnav, C.W. Clark, Phys. Rev. Lett. 100, 153002 (2008) CrossRefGoogle Scholar
  12. 12.
    J. Larson, J.P. Martikainen, A. Collin, E. Sjöqvist, Phys. Rev. A 82, 043620 (2010) CrossRefGoogle Scholar
  13. 13.
    W. Zawadzki, T.M. Rusin, J. Phys.: Condens. Matter 23, 143201 (2011) Google Scholar
  14. 14.
    Z. Li, H. Cao, L.B. Fu, Phys. Rev. A 91, 023623 (2015) CrossRefGoogle Scholar
  15. 15.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) CrossRefGoogle Scholar
  16. 16.
    J. Cserti, G. David, Phys. Rev. B 74, 172305 (2006) CrossRefGoogle Scholar
  17. 17.
    X. Wan, A.M. Turner, A. Vishwannath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011) CrossRefGoogle Scholar
  18. 18.
    S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, C. Zhang, R. Sankar, S.M. Huang, C.C. Lee, G. Chang, B.K. Wang, G. Bian, H. Zheng, D.S. Sanchez, F. Chou, H. Lin, S. Jia, M.Z. Hasan, Science 347, 294 (2015) CrossRefGoogle Scholar
  19. 19.
    S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.C. Lee, S.M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Science 349, 613 (2015) CrossRefGoogle Scholar
  20. 20.
    X.C. Huang, L.X. Zhao, Y.J. Long, P.P. Wang, D. Chen, Z.H. Yang, H. Liang, M.Q. Xue, H.M. Weng, Z. Fang, X. Dai, G.F. Chen, Phys. Rev. X 5, 031023 (2015) Google Scholar
  21. 21.
    T. Dubcek, C.J. Kennedy, L. Lu, W. Ketterle, M. Soljacic, H. Buljan, Phys. Rev. Lett. 114, 225301 (2015) CrossRefGoogle Scholar
  22. 22.
    D.-W. Zhang, S.-L. Zhu, Z.D. Wang, Phys. Rev. A 92, 013632 (2015) CrossRefGoogle Scholar
  23. 23.
    W.-Y. He, S. Zhang, K.T. Law, Phys. Rev. A 94, 013606 (2016) CrossRefGoogle Scholar
  24. 24.
    Z. Li, H.-Q. Wang, D.-W. Zhang, S.-L. Zhu, D.-Y. Xing, Phys. Rev. A 94, 043617 (2016) CrossRefGoogle Scholar
  25. 25.
    D.-W. Zhang, R.-B. Liu, S.-L. Zhu, Phys. Rev. A 95, 043619 (2017) CrossRefGoogle Scholar
  26. 26.
    T. Bzdušek, Q.-S. Wu, A. Rüegg, M. Sigrist, A.A. Soluyanov, Nature (London) 538, 75 (2016) CrossRefGoogle Scholar
  27. 27.
    Z. Yan, Z. Wang, Phys. Rev. Lett. 117, 087402 (2016) CrossRefGoogle Scholar
  28. 28.
    D.-W. Zhang, Y.X. Zhao, R.-B. Liu, Z.-Y. Xue, S.-L. Zhu, Z.D. Wang, Phys. Rev. A 93, 087402 (2016) Google Scholar
  29. 29.
    Y.-Q. Zhu, D.-W. Zhang, H. Yan, D.-Y. Xing, S.-L. Zhu, Phys. Rev. A 96, 033634 (2017) CrossRefGoogle Scholar
  30. 30.
    X. Tan, D.-W. Zhang, Q. Liu, G. Xue, H.-F. Yu, Y.-Q. Zhu, H. Yan, S.-L. Zhu, Y. Yu, Phys. Rev. Lett. 120, 130503 (2018) CrossRefGoogle Scholar
  31. 31.
    L. Liang, Y. Yu, Phys. Rev. A 93, 045113 (2016) CrossRefGoogle Scholar
  32. 32.
    P. Tang, Q. Zhou, S.-C. Zhang, Phys. Rev. Lett. 119, 206402 (2017) CrossRefGoogle Scholar
  33. 33.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornel, Science 269, 5221 (1995) Google Scholar
  34. 34.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995) CrossRefGoogle Scholar
  35. 35.
    S.-L. Zhu, B. Wang, L.-M. Duan, Phys. Rev. Lett. 98, 260402 (2007) CrossRefGoogle Scholar
  36. 36.
    P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, K. Sengstock, Nat. Phys. 7, 434 (2011) CrossRefGoogle Scholar
  37. 37.
    P. Soltan-Panahi, D.-S. Lühmann, J. Struck, P. Windpassinger, K. Sengstock, Nat. Phys. 8, 71 (2012) CrossRefGoogle Scholar
  38. 38.
    Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, J.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, J.-W. Pan, Science 354, 83 (2016) CrossRefGoogle Scholar
  39. 39.
    D.W. Zhang, Z.D. Wang, S.L. Zhu, Front. Phys. 7, 31 (2012) CrossRefGoogle Scholar
  40. 40.
    V. Galitski, I.B. Spielman, Nature (London) 494, 49 (2013) CrossRefGoogle Scholar
  41. 41.
    H. Zhai, Rep. Prog. Phys. 78, 026001 (2015) CrossRefGoogle Scholar
  42. 42.
    X.-J. Liu, K.T. Law, T.K. Ng, Phys. Rev. Lett. 112, 086401 (2014) CrossRefGoogle Scholar
  43. 43.
    S.-L. Zhu, H. Fu, C.-J. Wu, S.-C. Zhang, L.-M. Duan, Phys. Rev. Lett. 97, 240401 (2006) CrossRefGoogle Scholar
  44. 44.
    S.-L. Zhu, D.-W. Zhang, Z.D. Wang, Phys. Rev. Lett. 102, 210403 (2009) CrossRefGoogle Scholar
  45. 45.
    X. Shen, Z. Li, Phys. Rev. A 97, 013608 (2018) CrossRefGoogle Scholar
  46. 46.
    L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger, Nature (London) 483, 302 (2012) CrossRefGoogle Scholar
  47. 47.
    L.-K. Lim, J.N. Fuchs, G. Montambaux, Phys. Rev. Lett. 108, 175303 (2012) CrossRefGoogle Scholar
  48. 48.
    M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013) CrossRefGoogle Scholar
  49. 49.
    P. Windpassinger, K. Sengstock, Rep. Prog. Phys. 76, 086401 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shan Yang
    • 1
  • Shan-Chao Zhang
    • 1
  • Guan-Qiang Li
    • 2
  • Zhi Li
    • 1
    Email author
  1. 1.Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal UniversityGuangzhouP.R. China
  2. 2.School of Arts and Sciences, Shaanxi University of Science and TechnologyXi’anP.R. China

Personalised recommendations