Advertisement

The modified van der Waals equation of state

Part IV: Crystalline materials
  • Jacques RaultEmail author
Article
  • 72 Downloads

Abstract

PVT data of crystallizable materials (CM), minerals, alkali, alkali halides, metals, mineral oxides and hydroxides, rare gas, water, organic compounds and polymers, published in the literature are reanalyzed. It is shown that all these materials under pressure verify the modified van der Waals equation of state (mVW-EOS), discussed recently [J. Rault, Eur. Phys. J. E 40, 82 (2017)]. The characteristic parameters P*V* of this EOS depend only on the nature of the material and not on its state (liquid, glassy, solid of different structure) and whatever are its conductivity and magnetic properties (insulator, conductor, superconductor, paramagnetic, ferromagnetic). This EOS explains the following properties: (a) the fan structure of the isobars V(T), and of the tangents to the isotherms V(P); (b) the superposition principle of the isotherms V(P); (c) the αB rule: the constancy of the thermal pressure coefficient (dP/dT)V = αB, product of the thermal expansion coefficient α and the bulk modulus B; (d) its relation with the Slater conjecture: (dP/dT)V ~ dP/dTm in crystallized materials, Tm being the melting temperature. The characteristic pressure P* (T and V independent) is compared with the various pressures: (i) Pcoh = Ecoh/V, the cohesive energy density; (ii) PLm = Lm/ΔVm, Lm and ΔVm being the enthalpy and volume jumps at the melting, respectively; (iii) PD = ΔHa/DVa, ratio of the activation parameters of the autodiffusion coefficient; (iv) PX = XX′, X being the bulk modulus B, shear modulus G, elastic constants Cij, and the yield stress σy of the CM, X′ their pressure derivative (at ambient conditions). All the elastic constants B, G, Cij and the yield stress σy are linear functions of P at low pressure (P < P*) and extrapolate to zero at the same negative pressure − PX = −P*. (e) P = Bγ* ratio of the bulk modulus B and Grüneisen parameter γ* at zero pressure. (f) PΔVm is the pressure deduced from the linear relation between the volume jump ΔVm(P) at the transition (melting or crystalline transition) and the pressure. The universal relation P* = Pcoh = PLm = PD = PB = PG = PCij = Pσy = PΔVm is observed and discussed. In molecular compounds such as H2O, H2, and polymers with different intra- and intermolecular interactions, the compression involves two different processes, at low and high pressures, verifying the mVW-EOS with characteristic pressures P1* and P2*. The ratio of these pressures is about the ratio of the weak intermolecular and strong intramolecular bond energies. The generalized modified equation of state (gmVW-EOS) describes the two-step process of compression in materials having two (or several) types of bonds.

Keywords

Solid State and Materials 

References

  1. 1.
    P.W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 71 (1948) Google Scholar
  2. 2.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944) Google Scholar
  3. 3.
    F.D. Murnaghan, Proc. Symp. Appl. Math. 1, 158 (1949) Google Scholar
  4. 4.
    A.T.J. Hayward, Brit. J. Appl. Phys. 18, 965 (1967) Google Scholar
  5. 5.
    O.L. Anderson, Equation of State for Geophysics and Ceramic Science (Oxford University Press, Oxford, 1995) Google Scholar
  6. 6.
    J. Ross Macdonald, Rev. Mod. Phys. 41, 316 (1969) Google Scholar
  7. 7.
    J.-P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, Cambridge, 1991) Google Scholar
  8. 8.
    S. Gaurav, B.S. Sharma, S.B. Sharma, S.C. Upadhyaya, Physica B 322, 328 (2002) Google Scholar
  9. 9.
    F.D. Stacey, Rep. Prog. Phys. 68, 341 (2005) Google Scholar
  10. 10.
    J.X. Sun, L.C. Cai, Q. Wu, K. Jin, Phys. Scr. 88, 035005 (2013) Google Scholar
  11. 11.
    P.A. Rodgers, J. Appl. Polym. Sci. 48, 1061 (1993) Google Scholar
  12. 12.
    J. Rault, Eur. Phys. J. E 37, 113 (2014) Google Scholar
  13. 13.
    J. Rault, Eur. Phys. J. E 38, 91 (2015) Google Scholar
  14. 14.
    J. Rault, Eur. Phys. J. E 40, 82 (2017) Google Scholar
  15. 15.
    M. Morita, V. Sobolev, M. Flad, J. Nucl. Mater. 362, 227 (2007) Google Scholar
  16. 16.
    F.H. Fisher, O.E. Dial, Equation of State of Pure and Sea Water, Rep. SIO reference 75-28, 1975 Google Scholar
  17. 17.
    R. Spencer, G.D. Gilmor, J. Appl. Phys. A2, 1337 (1970) Google Scholar
  18. 18.
    J.H. Rose, J. Smith, F. Guinea, J. Ferrante, Phys. Rev. B29, 2963 (1984) Google Scholar
  19. 19.
    H. Schlosser J. Ferrante, Phys. Rev. B 40, 6405 (1989) Google Scholar
  20. 20.
    S.K. Saxena, J. Phys. Chem. Solids 65, 1561 (2004) Google Scholar
  21. 21.
    S.V.G.J. Baonza, M. Caceres, J. Nünez, J. Phys. Chem. 97, 6120 (1993) Google Scholar
  22. 22.
    S.V.G. Baonza, M. Caceres, J. Nünez, Phys. Rev. 51, 28 (1995) MathSciNetGoogle Scholar
  23. 23.
    R.W. Haward, in The Physics of Glassy Polymers (Applied Science Publishers, London, 1973), Chap. 5 Google Scholar
  24. 24.
    J. Rault, J. Non-Cryst. Solids 235–237, 737 (1998) Google Scholar
  25. 25.
    J.P. Romain, A. Migault, J. Jacquesson, J. Phys. Chem. Solids 37, 1159 (1976) Google Scholar
  26. 26.
    W.A. Spitzig, R.J. Sober, O. Richmond, Metal. Trans. 7A, 1703 (1976) Google Scholar
  27. 27.
    Y. Adda, J. Philibert, La Diffusion dans les Solides (PUF, Paris, 1966) Google Scholar
  28. 28.
    J.P. Poirier, Geophys. J. 92, 99 (1988) Google Scholar
  29. 29.
    A. Rice, N.H. Nachtrieb, J. Chem. Phys. 31, 139 (1959) MathSciNetGoogle Scholar
  30. 30.
    M. Beyeler, D. lazarus, Z. Naturforsch. 26, 291 (1971) Google Scholar
  31. 31.
    J.C. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1939) Google Scholar
  32. 32.
    Y. Hong, Chin. J., Met. Technol. 5, 119 (1989) Google Scholar
  33. 33.
    S.P. Clark, J. Chem. Phys. 31, 1526 (1959) Google Scholar
  34. 34.
    J.S. Dugdale, D.K. MacDonald, Phys. Rev. 89, 832 (1953) Google Scholar
  35. 35.
    L. Vocaldo, J.P. Poirier, G.D. Price, Am. Mineral. 85, 390 (2000) Google Scholar
  36. 36.
    T.H.K Barron, Ann. Phys. 1, 77 (1957) Google Scholar
  37. 37.
    Y. Wada, A. Itani, T. Nishi, J. Polym. Sci. A2, 201 (1969) Google Scholar
  38. 38.
    R.E. Barker, J. Appl. Phys. 38, 4234 (1967) Google Scholar
  39. 39.
    E.M. Brody, C.J. Lubell, C.L. Beatty, J. Polym. Sci. 13, 295 (1975) Google Scholar
  40. 40.
    B.K. Sharma, Polymer 24, 314 (1983) Google Scholar
  41. 41.
    J.K. Kruger, K.P. Bohn, M. Pietralla, J. Schreiber, J. Phys. Cond. B8, 10863 (1996) Google Scholar
  42. 42.
    T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures (Kluwer Academic Plenum Publishers, New York, 1999) Google Scholar
  43. 43.
    A. Migault, J. Phys. 32, 437 (1971) Google Scholar
  44. 44.
    F.D. Stacey, R.D. Irvine, Aust. J. Phys. 30, 631 (1977) Google Scholar
  45. 45.
    A.L. Kowarskii, High Pressure Chemistry and Physics of Polymer (CRC Press, Boca Raton, FL, 1994) Google Scholar
  46. 46.
    M.S. Anderson, C.A. Swenson, J. Phys. Chem. Solids 36, 145 (1975) Google Scholar
  47. 47.
    T. Yagi, J. Phys. Chem. Solids 39, 563 (1978) Google Scholar
  48. 48.
    N. Dass, M. Kumari, Phys. Status Solidi B 124, 531 (1984) Google Scholar
  49. 49.
    J. Shanker, M. Kumar, Phys. Status Solidi B 179, 351 (1993) Google Scholar
  50. 50.
    J.L. Tallon, J. Phys. Chem. Sol. 41, 837 (1980) Google Scholar
  51. 51.
    J.L. Tallon, W.H. Robinson, S.I. Smedley, Philos. Mag. 36, 741 (1977) Google Scholar
  52. 52.
    I.C. Sanchez, J. Cho, W.J. Chen, Macromolecules 26, 4234 (1993) Google Scholar
  53. 53.
    C.A. Swenson, J. Phys. Chem. Solids 27, 33 (1966) Google Scholar
  54. 54.
    M.S. Anderson, C.A. Swenson, Phys. Rev. B 28, 5395 (1983) Google Scholar
  55. 55.
    M.S. Anderson, C.A. Swenson, Phys. Rev. B 31, 668 (1985) Google Scholar
  56. 56.
    C. Kittel, Introduction to Physics of Solid State (John Wiley & Sons, Inc., New York, 2004) Google Scholar
  57. 57.
    M. Winzenick, V. Vijayakumar, W.B. Holzapfel, Phys. Rev. B 50, 381 (1994) Google Scholar
  58. 58.
    K. Takemura, K. Syassen, Phys. Rev. B 32, 2213 (1985) Google Scholar
  59. 59.
    I.N. Makarenko, A.M. Nikolaenko, V.A. Ivanov, S.M. Stishov, Sov. Phys. JETP 42, 875 (1975) Google Scholar
  60. 60.
    G.H. Shaw, D.A. Caldwell, Phys. Rev. 32, 7937 (1985) Google Scholar
  61. 61.
    J.O. Chua, A.L. Ruoff, J. Appl. Phys. 46, 4659 (1975) Google Scholar
  62. 62.
    M. Kumari, N. Dass, J. Phys.: Condens. Matter 2, 3219 (1990) Google Scholar
  63. 63.
    M. Taravillo, V.C. Baonza, J. Numez, M. Caceres, Phys. Rev. B 54, 7034 (1996) Google Scholar
  64. 64.
    D.L. Decker, J. Appl. Phys. 42, 3239 (1971) Google Scholar
  65. 65.
    S.N. Vaidya, G.C. Kennedy, J. Phys. Chem. Solids 32, 951 (1971) Google Scholar
  66. 66.
    Y.S. Sorensen, J. Geophys. Res. 88, 3543 (1983) Google Scholar
  67. 67.
    M. Kumari, Physica B 212, 391 (1995) Google Scholar
  68. 68.
    G. Steinle-Neumann, L. Stixrude, R.E. Cohen, Phys. Rev. B 60, 741 (1999) Google Scholar
  69. 69.
    L. Gerward, J. Phys. Chem. Solids 46, 925 (1985) Google Scholar
  70. 70.
    T. Ronggang, S. Jiuxun, Z. Chao, L. Ming, Physica B 390, 167 (2007) Google Scholar
  71. 71.
    A. Dewaele, P. Loubeyre, M. Mezouar, Phys. Rev. B 70, 094112 (2004) Google Scholar
  72. 72.
    H.K. Mao, Y. Wu, J.C. Chen, J.F. Shu, A.P. Jephcoat, J. Geophy. Res. 95, 21737 (1990) Google Scholar
  73. 73.
    P. Söderlind, J.A. Moriartys, J.M. Wills, Phys. Rev. B 53, 14063 (1996) Google Scholar
  74. 74.
    E. Huang, W.A. Bassett, P. Tao, J. Geophys. Res. 92, 8129 (1987) Google Scholar
  75. 75.
    T. Uchida, Y. Wang, M.L. Rivers, S.R. Sutton, J. Geophys. Res. 106, 21799 (2001) Google Scholar
  76. 76.
    W.W. Anderson, T.J. Ahrens, J. Geopys. Res. 99, 4273 (1994) Google Scholar
  77. 77.
    C.S. Yoo, H. Cynn, P. Söderlind, V. Iota, Phys. Rev. Lett. 84, 4132 (2000) Google Scholar
  78. 78.
    D. Antonangeli, M. Krisch, G. Fiquet, D.L. Farber, C.M. Aracne, J. Badro, F. Occelli, H. Requardt, Phys. Rev. Lett. 93, 215505 (2004) Google Scholar
  79. 79.
    P. Vinet, J.R. Smith, J. Ferrante, J.H. Rose, Phys. Rev. B 35, 1945 1987 Google Scholar
  80. 80.
    D.L. Heinz, R. Jeanloz, J. Appl. Phys. 55, 885 (1984) Google Scholar
  81. 81.
    S.H. Shim, T.S. Duffy, T. Kenichi, Earth Planet. Sci. Lett. 203, 729 (2002) Google Scholar
  82. 82.
    M. van Thiel, A.S. Kusubov, A.C. Mitchell, Technical Report UCRL-50108 Lawrence Radiation Lab., Livermore, CA, 1967 Google Scholar
  83. 83.
    T.S. Duffy, G. Shen, J. Shu, H.-K. Mao, R.J. Hemley, A.K. Singh J. Appl. Phys. 86, 6729 (1999) Google Scholar
  84. 84.
    O. Schultz, W.B. Holzapfel, Phys. Rev. B 48, 767 (1993) Google Scholar
  85. 85.
    W.J. Evans, M.J. Lipp, H. Cynn, C.S. Yoo, M. Somayazulu, D. Häusermann, G. Shen, V. Prakapenka, Phys. Rev. B 72, 094113 (2005) Google Scholar
  86. 86.
    L.A. Davis, R.B. Gordon, J. Chem. Phys. 46, 2650 (1967) Google Scholar
  87. 87.
    P. Kuchhal, R. Kumar, N. Dass, Phys. Rev. B 55, 8042 (1997) Google Scholar
  88. 88.
    M. Kumari, N. Dass, J. Phys. Condens. Matter 3, 4099 (1991) Google Scholar
  89. 89.
    C.A. Swenson, Phys. Rev. 111, 82 (1958) Google Scholar
  90. 90.
    D. Arrandonea, Y. Meng, M. Somayazulu, Physica B 355, 116 (2005) Google Scholar
  91. 91.
    S. Merkel, A.P. Jephcoat, J. Shu, H.-K. Mao, P. Gillet, R.J. Hemley, Phys. Chem. Miner. 29, 1 (2002) Google Scholar
  92. 92.
    J. Zhao, L. Wang, Z. Liu, H. Liu, G. Chen, D. Wu, J. Luo, N. Wang, Y. Yu, C. Jin, Q. Guo, J. Am. Chem. Soc. 130, 13828 (2008) Google Scholar
  93. 93.
    G. Garbarino, A. Sow, P. Lejay, A. Sulpice, P. Toutlemonde, M. Mezouar, M. Nunez-Regueiro, Europhys. Lett. 86, 27001 (2009) Google Scholar
  94. 94.
    S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayawa, T.M. Takata, K. Prassides, Phys. Rev. B 80, 064506 (2009) Google Scholar
  95. 95.
    Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, Y. Takano, Appl. Phys. Lett. 93, 152505 (2008) Google Scholar
  96. 96.
    R.S. Kumar, A.L. Cornelius, J.L. Sarrao, Phys. Rev. B 70, 214526 (2004) Google Scholar
  97. 97.
    N.F. Brady, J.M. Montgomery, G. Tosi, T. Gebre, S.T. Weir, Y.K. Vohra, D.J. Hilton, Eur. Phys. J. B 86, 334 (2013) Google Scholar
  98. 98.
    W.O. Uhoya, G.M. Tsoi, Y.K. Vohra, M.A. McGuire, A.S. Sefat, J. Phys.: Condens. Matter 23, 365703 (2011) Google Scholar
  99. 99.
    N.F. Mott, H. Jones, Properties of Metals and Alloys (Dover Publications, New York, 1958) Google Scholar
  100. 100.
    S. Speziale, C.S. Zha, T.S. Duffy, J. Geophys. Res. 106, 515 (2001) Google Scholar
  101. 101.
    Y. Fei, Am. Mineral. 84, 272 (1999) Google Scholar
  102. 102.
    M.S. Vassiliou, T.J. Ahrens, Geophys. Res. Lett. 8, 729 (1981) Google Scholar
  103. 103.
    B.B. Karki, L. Stixrude, S.J. Clark, M.C. Warren, G.J. Ackland, J. Crain, Am. Mineral. 82, 51 (1997) Google Scholar
  104. 104.
    C.E. Runge, A. Kubo, B. Kiefer, Y. Meng, V.B. Prakapenka, G. Shen, R.J. Cava, T.S. Duffy, Phys. Chem. Miner. 33, 699 (2006) Google Scholar
  105. 105.
    X. Xia, D.J. Weidner, H. Zhao, Amer. Miner. 83, 68 (1998) Google Scholar
  106. 106.
    Y. Fei, H.K. Mao, J. Geophys. Res. 875 (1993) Google Scholar
  107. 107.
    R. Keller, W.B. Holzapfel, H. Schulz, Phys. Rev. 16, 1403 Google Scholar
  108. 108.
    H. Liu, L. Wang, X. Xiao, F. De Carlo, J. Feng, H. Mao, R. Hemley Proc. Natl. Acad. Sci. USA 105, 13229 (2008) Google Scholar
  109. 109.
    G. Parthasarathy, W.B. Holzapfel, Phys. Rev. Lett. 38, 10105 (1988) Google Scholar
  110. 110.
    T. Krüger, W.B. Holzapfel, Phys. Rev. Lett. 69, 305 (1992) Google Scholar
  111. 111.
    G. Faivre, J.L. Gardissart, Macromolecules 19, 1988 1986 Google Scholar
  112. 112.
    J. Scott Weaver, D.W. Chipman, T. Takahashi, Am. Mineral. 64, 604 (1979) Google Scholar
  113. 113.
    H. Mao, B. Sundmana, Z. Wang, S.K. Saxena, J. Alloys Compd. 327, 253 (2001) Google Scholar
  114. 114.
    S.P. Marsh, LASL Shock Hugoniot Data, Los Alamos Series on Dynamics Materials Properties (University of California Press, Berkeley, 1980) Google Scholar
  115. 115.
    W. Pabst, E. Gregorova, Ceramics-Silikaty 57, 167 (2013) Google Scholar
  116. 116.
    R.T. Down, D.C. Palmer, Am. Miner. 79, 9 (1994) Google Scholar
  117. 117.
    W.A. Bassett, J.D. Barnett, Phys. Earth Planet. Interiors 3, 54 (1970) Google Scholar
  118. 118.
    C.S. Zha, T.S. Duffy, R.T. Downs, H.K. Mao, R.J. Hemley, Earth Planet. Sci. Lett. 159, 25 (1998) Google Scholar
  119. 119.
    G.I. Kerley, L. Chhabildas, Multicomponent-Multiphase Equation of State for Carbon, Sandia National Laboratories Report SAND2001-2619, 2001 Google Scholar
  120. 120.
    Y. Wang, J.E. Pankik, B. Kiefer, K.M. Lee, Sci. Rep. 2, 520 (2012) Google Scholar
  121. 121.
    F. Occelli, P. Loubeyre, R. Letoullec, Nat. Mater. 2, 151 (2003) Google Scholar
  122. 122.
    A.J. Karavsevkii, W.B. Holzapfel, Phys. Rev. B 67, 224301 (2003) Google Scholar
  123. 123.
    L.W. Finger, R.M. Hazen, G. Zou, H.K. Mao, P.M. Bell, Appl. Phys. Lett. 39, 892 (1981) Google Scholar
  124. 124.
    R.J. Hemley, C.S. Zha, A.P. Jephcoat, H.K. Mao, L.W. Finger, Phys. Rev. B 39, 11820 (1989) Google Scholar
  125. 125.
    A. Polian, J.M. Besson, M. Grimsditch, W.A. Grosshans, Phys. Rev. B 39, 1332 (1989) Google Scholar
  126. 126.
    A.N. Zisman, I.V. Aleksandrov, S.M. Stishov, Phys. Rev. B 39, 484 (1989) Google Scholar
  127. 127.
    R.J. Hemley, A.P. Jephcoat, H.K. Mao, C.S. Zha, L.W. Finger, D.E. Cox, Nature 330, 737 (1987) Google Scholar
  128. 128.
    R. Jeanloz, Geophys. Res. Lett. 8, 1219 (1981) Google Scholar
  129. 129.
    G.S. Kell, E. Whalley, Proc. R. Soc. A 258, 565 (1965) Google Scholar
  130. 130.
    M.S. Anderson, C.A. Swenson, Phys. Rev. B 10, 5184 (1974) Google Scholar
  131. 131.
    J. Van Straaten, I.F. Silvera, Phys. Rev. B 37, 1989 1988 Google Scholar
  132. 132.
    R.J. Hemley, H.K. Mao, L.W. Finger, P. Jephcoat, R.M. Hazen, C.S. Zha, Phys. Rev. 42, 6458 (1990) Google Scholar
  133. 133.
    S. Jiuxun, W. Qiang, C. Lingcang, J. Fukqian, Physica B 371, 257 (2006) Google Scholar
  134. 134.
    S. Jiuxun, personal communication, 2015 Google Scholar
  135. 135.
    H.K. Mao, P. Jephcoat, R.J. Hemley, L.W. Finger, C.S. Zha, R.M. Hazen, D.E. Cox, Science 239, 1131 (1988) Google Scholar
  136. 136.
    P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R.J. Hemley, H.K. Mao, L.W. Finger, Nature 383, 702 (1996) Google Scholar
  137. 137.
    C.S. Zha, T.S. Duffy, H. Mao, R.J. Russell, J. Hemley, Phys. Rev. B 48, 9246 (1993) Google Scholar
  138. 138.
    O. Olabisi, R. Simha, Macromolecules 8, 206 (1975) Google Scholar
  139. 139.
    V.K. Sachdev, R.K. Jain, J. Polym. Sci. B 43, 1618 (2005) Google Scholar
  140. 140.
    W.A. Spitzig, O. Richmond, Polym. Eng. Sci. 9, 1129 (1979) Google Scholar
  141. 141.
    L. Fontana, D.Q. Vinh, M. Santoro, S. Scandolo, F.A. Gorelli, R. Bini, M. Hanfland, Phys. Rev. B 75, 174112 (2007) Google Scholar
  142. 142.
    M. Naoki, S. Koeda, J. Phys. Chem. 93, 948 (1989) Google Scholar
  143. 143.
    H. Schlosser, P. Vinet, J. Ferrante, Phys. Rev. B 40, 5929 (1989) Google Scholar
  144. 144.
    E. Donth, The Glass Transition (Springer, Berlin, 2001) Google Scholar
  145. 145.
    A. Zerr, R. Boehler, Nature 371, 506 (1994) Google Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique des Solides, CNRS, Université de Paris-SudOrsayFrance

Personalised recommendations