Advertisement

Spherical quantum dot in Kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index changes

  • Kriti BatraEmail author
  • Vinod Prasad
Regular Article

Abstract

Linear and nonlinear optical absorption coefficients (ACs) and refractive index changes (RICs) between the ground and the excited states of the GaAs spherical quantum dot (QD) under the effect of Kratzer confining potential and laser field have been investigated theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger equation using finite difference method within the effective mass approximation. The dependency of energies, probability densities, dipole matrix elements on the Kratzer potential parameters and on the size of QD are investigated. The use of density matrix formalism is made to study the variations in linear, nonlinear ACs and RICs with the energy and intensity of the laser field. Also the effect of variation of the QD size and Kratzer potential parameters on linear, nonlinear ACs and RICs are studied.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    D. Vasudevan, R.R. Gaddam, A. Trinchi, I. Cole, J. Alloys Compd. 636, 395 (2015) CrossRefGoogle Scholar
  2. 2.
    A.D. Yoffe, Adv. Phys. 50, 1 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    E. Feddi, A. Talbi, M.E. Mora-Ramos, M. El Haouari, F. Dujardine, C.A. Duque, Phys. B: Condens. Matter 524, 64 (2017) ADSCrossRefGoogle Scholar
  4. 4.
    C.V. Nguyen, N.N. Hieu, D. Muoi, C.A. Duque, E. Feddi, H.V. Nguyen, Le T.T. Phuong, B.D. Hoi, H.V. Phuc, J. Appl. Phys. 123, 034301 (2018) ADSCrossRefGoogle Scholar
  5. 5.
    R. Khordad, H. Bahramiyan, Phys. E: Low Dimens. Syst. Nanostruct. 66, 107 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    T. Chakraborty, Nanoscopic quantum rings: a new perspective, in Advance in Solid State Physics, edited by B. Kramer (Springer, Berlin, Heidelberg, 2003), Vol. 43, pp. 79–94 Google Scholar
  7. 7.
    B. Cakir, Y. Yakar, A. Ozmen, M.O. Sezer, M. Sahin, Superlattices Microstruct. 47, 556 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    K.M. Gambaryan, V.M. Aroutiounian, V.G. Harutyunyan, O. Marquardt, P.G. Soukiassian, Appl. Phys. Lett. 100, 033104(1–4) (2012) ADSCrossRefGoogle Scholar
  10. 10.
    J. Owen, L. Brus, J. Am. Chem. Soc. 139, 10939 (2017) CrossRefGoogle Scholar
  11. 11.
    W. Zhou, J.J. Coleman, Curr. Opin. Solid State Mater. Sci. 20, 352 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    N. Ben Afkir, E. Feddi, F. Dujardin, M. Zazoui, J. Meziane, Phys. B: Condens. Matter 534, 10 (2018) ADSCrossRefGoogle Scholar
  13. 13.
    D. Bera, L. Qian, T.-K. Tseng, P.H. Holloway, Materials 3, 2260 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    B. Cakir, Y. Yakar, A Ozmen, Phys. B: Condens. Matter 458, 138 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    A. Galiautdinov, Phys. Lett. A 382, 72 (2018) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 374, 637 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    R. Khordad, Superlattices Microstruct. 54, 7 (2013) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Sakiroglu, E. Kasapoglu, R.L. Restrepo, C.A. Duque, I. Sökm, Phys. Status Solidi B 254, 1600457(1–6) (2017) ADSCrossRefGoogle Scholar
  19. 19.
    J. García-Ravelo, A. Menéndez, J. García-Martínez, A. Schulze-Halberg, Phys. Lett. A 378, 2038 (2014) ADSCrossRefGoogle Scholar
  20. 20.
    V. Prasad, P. Silotia, Phys. Lett. A 375, 3910 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    H. Hassanabadi, A.A. Rajabi, Phys. Lett. A 373, 679 (2009) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Dehyar, G. Rezaei, A. Zamani, Phys. E 84, 175 (2016) CrossRefGoogle Scholar
  23. 23.
    D.B. Hayrapetyan, S.M. Amirkhanyan, E.M. Kazaryan, H.A. Sarkisyan, Phys. E: Low Dimens. Syst. Nanostruct. 84, 367 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    A. Kratzer, Zeit. Phys. 3, 289 (1920) ADSCrossRefGoogle Scholar
  25. 25.
    E. Fues, Ann. Phys. (Paris) 80, 281 (1926) ADSGoogle Scholar
  26. 26.
    D.A. Nugraha, A. Suparmi, C. Cari, B.N. Pratiwi, J. Phys.: Conf. Ser. 820, 012014 (2017) Google Scholar
  27. 27.
    L. Fortunato, A. Vitturi, J. Phys. G: Nucl. Part. Phys. 29, 1341 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    L. Fortunato, A. Vitturi, J. Phys. G: Nucl. Part. Phys. 30, 627 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    D. Bonatsos, P.E. Georgoudis, N. Minkov, D. Petrellis, C. Quesne, Phys. Rev. C 88, 034316 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    N. Soheibi, M. Hamzavi, M. Eshghi, S.M. Ikhdair, Eur. Phys. J. B 90, 212 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    S.A. Najafizade, H. Hassanabadi, S. Zarrinkamar, Chin. Phys. B 25, 040301 (2016) CrossRefGoogle Scholar
  32. 32.
    J.M. Romero-Enrique, A.O. Parry, M.J. Greenall, Phys. Rev. E 69, 061604 (2004) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    G. Van Hooydonk, Spectrochim. Acta Part A 56, 2273 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    C. Berkdemir, A. Berkdemir, J. Han, Chem. Phys. Lett. 417, 326 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    B. Cakir, Y. Yakar, A. Ozmen, Phys. B: Condens. Matter 510, 86 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    B. Cakir, Y. Yakar, A. Ozmen, Chem. Phys. Lett. 684, 250 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    A. Zamani, T. Azargoshasb, E. Niknam, E. Mohamma- dhosseini, Optik 142, 273 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    R.E. Acosta, A.L. Morales, C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Phys. Status Solidi B 253, 744 (2016) ADSCrossRefGoogle Scholar
  39. 39.
    K. Li, K. Guo, L. Liang, Physica B 502, 146 (2016) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    M.G. Barseghyan, A.A. Kirakosyan, C.A. Duque, Eur. Phys. J. B 72, 521 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    I. Karabulut, M.E. Mora-Ramos, C.A. Duque, J. Lumin, 131, 1502 (2011) CrossRefGoogle Scholar
  42. 42.
    M. Santhi, A. John Peter, C.K. Yoo, Superlattices Microstruct. 52, 234 (2012) ADSCrossRefGoogle Scholar
  43. 43.
    R. Khordad, S.K. Khaneghah, M. Masoumi, Superlattices Microstruct. 47, 538 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    J.L. Polleux, C. Rumelhard, in 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications (Cat. No.00TH8534), Glasgow, 2000, pp. 167–172 Google Scholar
  45. 45.
    J.L. Polleux, F. Moutier, A.L. Billabert, C. Rumelhard, E. Sönmez, H. Schumacher, in 11th GAAS Symposium – Munich, 2003, pp. 231–234 Google Scholar
  46. 46.
    A.A. Babaei-Brojeny, M. Mokari, Phys. Scr. 84, 045003 (2011) ADSCrossRefGoogle Scholar
  47. 47.
    O. Bayrak, I. Boztosun, H. Ciftci, Int. J. Quantum Chem. 107, 540 (2007) ADSCrossRefGoogle Scholar
  48. 48.
    I.I. Goldman, V.D. Krivchenkov, Problem in Quantum Mechanics (Dover Publishers, NY, 2010), p. 45 Google Scholar
  49. 49.
    G.V.B. de Souza, A.B. Alfonso, Physica E 66, 128 (2015) ADSCrossRefGoogle Scholar
  50. 50.
    K. Batra, V. Prasad, Rev. Mex. Fis. 64, 7 (2018) CrossRefGoogle Scholar
  51. 51.
    K. Batra, V. Prasad, Physica E 61, 171 (2014) ADSCrossRefGoogle Scholar
  52. 52.
    C.J. Zhang, K.X. Guo, Z.E. Lu, Physica E 36, 92 (2007) ADSCrossRefGoogle Scholar
  53. 53.
    J. Huang, Libin, Phys. Lett. A 372, 4323 (2008) ADSCrossRefGoogle Scholar
  54. 54.
    M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 373, 3079 (2009) ADSCrossRefGoogle Scholar
  55. 55.
    M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 374, 637 (2010) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University School of Basic and Applied Sciences, GGS Indraprastha UniversityDwarka, DelhiIndia
  2. 2.Department of PhysicsSwami Shraddhanand College, University of DelhiDelhiIndia

Personalised recommendations