Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temperature dependent volume expansion of microgel in nonequilibria

A dynamic effect resembling the globule–coil percolation type crossover with a certain powerly conformable time–temperature decisive increment

  • 191 Accesses

  • 1 Citations

Abstract

We propose to adopt a non-isothermal and colloid type cluster–cluster aggregation stochastic model aimed at comprehending the temperature driven and polymer swelling accompanying volume expansion encountered in microgels. The nonequilibrium nature of the process is captured by describing expansion characteristics with simplified power laws, indicating the scalability of properties with time and temperature. Additionally, molecular dynamics simulations of the presented mechanism for a chosen biopolymer have been performed. This can be of interest for experimenters working in the field of nonequilibrium phase transitions, and fairly prospectively, within the area of thermal phonon-involving technology. In these areas, scanning the system’s temperature, or sometimes tuning similar dissipation-addressing physical factors, such as pH, appears to be a fairly pivotal examination case.

References

  1. 1.

    H. Cheng, G. Zhang, Thermally sensitive microgels: from basic science to applications, in: Hydrogel Micro and Nanoparticles, edited by L.A. Lyon, M.J. Serpe (Wiley- VCH Verlag GmbH and Co. KGaA, Weinheim 2012)

  2. 2.

    D. Vlassopoulos, E. Stiakakis, M. Kapnistos, Rheol. Rev. 2007, 179 (2007)

  3. 3.

    N. Kruszewska, A. Gadomski, Physica A 389, 3053 (2010)

  4. 4.

    P.J. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953)

  5. 5.

    W.H. Stockmayer, Makromol. Chem. 35, 54 (1960)

  6. 6.

    N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

  7. 7.

    A. Gadomski, Philos. Mag. Lett. 70, 335 (1994)

  8. 8.

    A. Gadomski, J. M. Rubí, J. Luczka, M. Ausloos, Chem. Phys. 310, 153 (2005)

  9. 9.

    I. Santamaría-Holek, J. M. Rubí, A. Gadomski, J. Phys. Chem. B 111, 2293 (2007)

  10. 10.

    A. Gadomski, EPL 89, 40002 (2010), and references therein

  11. 11.

    D.W. Van Krevelen, inProperties of Polymers. Correlations with Chemical Structures (Elsevier, Amsterdam, 1972), Chap. 9

  12. 12.

    H. Lhuissier, D. Lohse, X. Zhang, Soft Matter 10, 942 (2014)

  13. 13.

    I. Lynch, K.A. Dawson, J. Phys. Chem. B 108, 10893 (2004)

  14. 14.

    M. Niemiec, A. Gadomski, J. Łuczka, L. Schimansky-Geier, Phys. A 248, 365 (1998)

  15. 15.

    A.V. Popov, R. Hernandez, J. Chem. Phys. 126, 244506 (2007)

  16. 16.

    E. Sarmiento-Gomes, I. Santamaría-Holek, R. Castillo, J. Phys. Chem. B 118, 1146 (2014)

  17. 17.

    L.-W. Xia, R. Xie, X.-J. Ju, W. Wang, Q. Chen, L.-Y. Chu, Nat. Commun. 4, 2226 (2013)

  18. 18.

    R.P. Chartoff, A.K. Sircar, Thermal analysis of polymers, in: Characterization and Analysis of Polymers (John Wiley and Sons, New Jersey, 2008)

  19. 19.

    S. Burov, M. Gitterman, Phys. Rev. E 94, 052144 (2016)

  20. 20.

    S. Boral, A. Saxena, H.B. Bohidar, J. Phys. Chem. B 112, 3625 (2008)

  21. 21.

    H. Tsuji, Macromol. Biosci. 5, 569 (2005)

  22. 22.

    E. Krieger, G. Vriend, J. Comput. Chem. 36, 996 (2015)

  23. 23.

    M.E. Blewis, G.E. Nugent-Derfus, T.A. Schmidt, B.L. Schumacher, R.L. Sah, Eur. Cell Mater. 13, 26 (2007)

  24. 24.

    M.N. Moghadam, P. Abdel-Sayed, V.M. Camine, D.P. Pioletti, J. Biomech. 48, 370 (2015)

  25. 25.

    A. Gadomski, N. Kruszewska, Phys. Lett. A 378, 2881 (2014)

  26. 26.

    Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee et al., J. Comput. Chem. 24, 1999 (2003)

  27. 27.

    T. Śliwa, M. Jarzȩbski, Curr. Top. Biophys. 37, 29 (2015)

  28. 28.

    L. Wang, X. Shi, J. Wang, Soft Matter 14, 3090 (2018)

  29. 29.

    M. Doi, S. F. Edwards,The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1988)

  30. 30.

    S. Lindman, I. Lynch, E. Thulin, H. Nilsson, K.A. Dawson, S. Linse, Nano Lett. 7 , 914 (2007)

  31. 31.

    Z. Pawlak, W. Urbaniak, A. Oloyede, Wear 27, 1745 (2011)

  32. 32.

    A.J. Jezewski, J.J. Larson, B. Wysocki, P.H. Davis, T. Wysocki, Biotechnol. Bioeng. 111, 2454 (2014)

  33. 33.

    S. Bizet, J. Galy, J.-F. Gérard, Macromolecules 39, 2574 (2006)

Download references

Author information

Correspondence to Natalia Kruszewska.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gadomski, A., Kruszewska, N. & Bełdowski, P. Temperature dependent volume expansion of microgel in nonequilibria. Eur. Phys. J. B 91, 237 (2018). https://doi.org/10.1140/epjb/e2018-90408-x

Download citation

Keywords

  • Statistical and Nonlinear Physics