Advertisement

High energy shift in the optical conductivity spectrum of the bilayer graphene

  • Vardan ApinyanEmail author
  • Tadeusz K. Kopeć
Open Access
Regular Article
  • 46 Downloads

Abstract

We calculate theoretically the optical conductivity in the bilayer graphene by considering Kubo-Green-Matsubara formalism. Different regimes of the interlayer coupling parameter have been considered in the paper. We show that the excitonic effects substantially affect the optical conductivity spectrum at the high-frequency regime when considering the full interaction bandwidth, leading to a total suppression of the usual Drude intraband optical transition channels and by creating a new type of optical gap. We discuss the role of the interlayer coupling parameter and the Fermi level on the conductivity spectrum, going far beyond the usual tight-binding approximation scheme for the extrinsic bilayer graphene.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    J.M. Liu, in Principles of Photonics (Cambridge University Press, Cambridge, United Kingdom, 2016), p. 260 Google Scholar
  2. 2.
    K. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature London 438, 197 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    E.V. Castro et al. Phys. Rev. Lett. 99, 216802 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 76 165416 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    H. Leal, D.V. Khveshchenko, Nucl. Phys. B 687, 323 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    I.L. Aleiner, D.E. Kharzeev, A.M. Tsvelik, Phys. Rev. B 76, 195415 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    D.V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    D.V. Khveshchenko, J. Phys.: Condens. Matter 21, 075303 (2009) ADSGoogle Scholar
  10. 10.
    E.V. Gorbar, V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Lett. A 313, 472 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    V. Apinyan, T.K. Kopeć, Phys. Scr. 91, 095801 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    V. Apinyan, T.K. Kopeć, Eur. Phys. J. B 90, 130 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Science 320, 206 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    B. Huard et al., Phys. Rev. Lett. 98, 236803 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    J.R. Williams, L. DiCarlo, C.M. Marcus, Science 317, 638 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    D.S.L. Abergel, V.I. Fal’ko, Phys. Rev. B 75, 155430 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    E.V. Gorbar, V.P. Gusynin, A.B. Kuzmenko, S.G. Sharapov, Phys. Rev. B 86, 075414 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. Lett. 97, 266801 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    J. Cserti, Phys. Rev. B 75, 033405 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    E.J. Nicol, J.P. Carbotte, Phys. Rev. B 77, 155409 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    E. McCann, D.S. Abergel, V.I. Falko, Solid State Commun. 143, 110 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    C.H. Yang, Z.M. Ao, X.F. Wei, J.J. Jiang, Physica B 457, 92 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    W.-K. Tse, A.H. MacDonald, Phys. Rev. B 80, 195418 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    H. Rezania, M. Yarmohammadi, Indian J. Phys. 90, 811 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    P. Nath, D. Sanyal, D. Jana, Curr. Appl. Phys. 15, 691 (2015) ADSCrossRefGoogle Scholar
  26. 26.
    C.H. Yang, Y.Y. Chen, J.J. Jiang, Z.M. Ao, Solid State Commun. 227, 23 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    D.S.L. Abergel, A. Russell, V.I. Fal’ko, Appl. Phys. Lett. 91, 063125 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    M. Koshino, New J. Phys. 11, 095010 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    L.A. Falkovsky, Pisḿa v ZhETF 97, 496 (2013) [JETP Lett. 97, 429 2013] Google Scholar
  30. 30.
    L.A. Falkovsky, Jetp 110, 319 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    L.M. Zhang, Z.Q. Li, D.N. Basov, M.M. Fogler, Z. Hao, M.C. Martin, Phys. Rev. B 78 235408 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, T.B. Norris, Appl. Phys. Lett. 104, 261909 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    M. Bruna, S. Borini, Appl. Phys. Lett. 94, 031901 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    Y. Wang, Z. Ni, L. Liu, Y. Liu, C. Cong, T. Yu, X. Wang, D. Shen, Z. Shen, ACS Nano 4, 4074 (2010) CrossRefGoogle Scholar
  35. 35.
    A.B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, K.S. Novoselov, Phys. Rev. B 80, 165406 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Phys. Rev. Lett. 102, 037403 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Phys. Rev. Lett. 102, 256405 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    D.S.L. Abergel, A. Russell, V.I. Falko, Appl. Phys. Lett. 91, 063125 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    T. Stauber, N.M.R. Peres, A.K. Geim, Phys. Rev. B 78, 085432 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    D.S.L. Abergel, H. Min, E.H. Hwang, S. Das Sarma, Phys. Rev. B 85, 045411 (2012) ADSCrossRefGoogle Scholar
  41. 41.
    L. Yang, C.-H. Park, J. Deslippe, S.G. Louie, Phys. Rev. Lett. 03, 186802 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Phys. Rev. B 81, 155413 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995) ADSCrossRefGoogle Scholar
  44. 44.
    A. Goetzberger, C. Hebling, H. Schock, Mater. Sci. Eng. 40, 1 (2003) CrossRefGoogle Scholar
  45. 45.
    L. Yang, Phys. Rev. B 83, 085405 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    P.E. Trevisanutto, M. Holzmann, M. Côté, V. Olevano, Phys. Rev. B 81, 121405 (2010) ADSCrossRefGoogle Scholar
  47. 47.
    G.D. Mahan, Many-Particle Physics, 3rd edn. (Kluwer Academic/, New York, 2000) Google Scholar
  48. 48.
    A.J. Millis, in Strong Interactions in Low Dimensions, edited by D. Baeriswyl and L. De Giorgi (Kluwer Academic, Berlin, 2003) Google Scholar
  49. 49.
    G. Wannier, Rev. Mod. Phys. 34, 645 (1962) ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    J.W. Negele, H. Orland, Quantum Many-Particle Systems (Addison-Wesley, Reading, MA, 1988) Google Scholar
  51. 51.
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Pergamon Press, 1965) Google Scholar
  52. 52.
    V. Apinyan, T.K. Kopeć, Physica E 95, 108 (2018) ADSCrossRefGoogle Scholar
  53. 53.
    V. Apinyan, T.K. Kopeć, Superlattices Microstruct. 119, 166 (2018) ADSCrossRefGoogle Scholar
  54. 54.
    J.P. Hobson, W.A. Nierenberg, Phys. Rev. 89, 662 (1953) ADSCrossRefGoogle Scholar
  55. 55.
    M. Abramovitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970) Google Scholar
  56. 56.
    R.R. Nair et al., Science 320, 1308 (2008) ADSCrossRefGoogle Scholar
  57. 57.
    N.M.R. Peres, F. Guinea, H. Castro Neto, Phys. Rev. B 73, 125411 (2006) ADSCrossRefGoogle Scholar
  58. 58.
    N.H. Shon, T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998) ADSCrossRefGoogle Scholar
  59. 59.
    X.-Z. Yan, Y. Romiah, C.S. Ting, Phys. Rev. B 77, 125409 (2008) ADSCrossRefGoogle Scholar
  60. 60.
    X-Z. Yan, C.S. Ting, Phys. Rev. B 80, 155423 (2009) ADSCrossRefGoogle Scholar
  61. 61.
    S. Doniach, E.H. Sondheimer, Green’s Functions for Solid State Physicists, 2nd edn. (Benjamin, Reading, 1974) Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of Low Temperature and Structure Research, Polish Academy of SciencesWrocław 2Poland

Personalised recommendations