Advertisement

On electronic conductance of partially unzipped armchair nanotubes: further analysis

  • Basant Lal SharmaEmail author
Regular Article

Abstract

An investigation of the electronic conductance, based on the nearest-neighbor tight-binding approximation for non-interacting π-electrons, is presented for a junction generated by partial unzipping along the zigzag direction of armchair nanotube. An exact solution of the transmission problem has been found through the scalar discrete Wiener–Hopf method, by exploiting a symmetry of the structure for the reduction of 2 × 2 matrix kernel. The electronic probability distribution, far away from the junction on either side of it, is obtained in closed form via mode-matching. As the main result of the paper, an analytical expression for the reflection and transmission coefficients, as well as the scattering matrix, previously obtained via computational methods in earlier studies, is provided using the Chebyshev polynomials. It is found that the highly simplified nearest neighbor tight binding model of the ribbon/tube junction does not allow a mixing of the parity based on even and odd modes. The paper includes several graphical illustrations and analytical derivations.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    S. Iijima et al., Nature 354, 56 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    N. Hamada, S.i. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Phys. Rev. B 71, 193406 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    R. Saito, G. Dresselhaus, M. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, Imperial College, London, 1998) Google Scholar
  6. 6.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    A.L. Elías, A.R. Botello-Méndez, D. Meneses-Rodríguez, V. Jehová González, D. Ramírez-González, L. Ci, E. Muñoz-Sandoval, P.M. Ajayan, H. Terrones, M. Terrones, Nano Lett. 10, 366 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    A. Cano-Márquez, F. Rodríguez-Macías, J. Campos-Delgado, C. Espinosa-González, F. Tristán-López, D. Ramírez-González, D. Cullen, D. Smith, M. Terrones, Y. Vega-Cantú, Nano Lett. 9, 1527 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Yoon, S. Salahuddin, Appl. Phys. Lett. 97, 033102 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    S. Costamagna, A. Schulz, L. Covaci, F. Peeters, Appl. Phys. Lett. 100, 232104 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    H. Santos, L. Chico, L. Brey, Phys. Rev. Lett. 103, 086801 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    K.L. Ma, X.H. Yan, Y.D. Guo, Y. Xiao, Eur. Phys. J. B 83, 487 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    B. Wang, J. Wang, Phys. Rev. B 81, 045425 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    L. Chico, H. Santos, A. Ayuela, W. Jaskólski, M. Pelc, L. Brey, Acta Phys. Pol. A 118, 433 (2010) CrossRefGoogle Scholar
  16. 16.
    J.S. Friedman, A. Girdhar, R.M. Gelfand, G. Memik, H. Mohseni, A. Taflove, B.W. Wessels, J.P. Leburton, A.V. Sahakian, Nat. Commun. 8, 15635 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    S. Datta, Electronic transport in mesoscopic systems, Cambridge studies in semiconductor physics and microelectronic engineering 3 (Cambridge University Press, Cambridge, UK, 1995) Google Scholar
  18. 18.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957) CrossRefGoogle Scholar
  19. 19.
    R. Landauer, Phys. Scr. 1992, 110 (1992) CrossRefGoogle Scholar
  20. 20.
    B. Noble, Methods based on the Wiener–Hopf technique (Pergamon Press, London, 1958) Google Scholar
  21. 21.
    B.L. Sharma, Z. Angew. Math. Phys. 69, 16 (2018) CrossRefGoogle Scholar
  22. 22.
    B.L. Sharma, Eur. Phys. J. B 91, 84 (2018) ADSCrossRefGoogle Scholar
  23. 23.
    A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, Heidelberg, 2008) Google Scholar
  24. 24.
    A. Weisshaar, J. Lary, S.M. Goodnick, V.K. Tripathi, J. Appl. Phys. 70, 355 (1991) ADSCrossRefGoogle Scholar
  25. 25.
    W.D. Sheng, J. Phys.: Condens. Matter 9, 8369 (1997) ADSGoogle Scholar
  26. 26.
    B.L. Sharma, Waves Random Complex 28, 96 (2018) ADSCrossRefGoogle Scholar
  27. 27.
    J.C. Mason, D.C. Handscomb, Chebyshev polynomials (Chapman & Hall/CRC, Boca Raton, FL, 2003) Google Scholar
  28. 28.
    B.L. Sharma, Z. Angew. Math. Phys. 66, 3591 (2015) MathSciNetCrossRefGoogle Scholar
  29. 29.
    B.L. Sharma, Wave Motion 65, 55 (2016) MathSciNetCrossRefGoogle Scholar
  30. 30.
    N. Wiener, E. Hopf, Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys. Math. 32, 696 (1931) Google Scholar
  31. 31.
    M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996) Google Scholar
  32. 32.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996) ADSCrossRefGoogle Scholar
  33. 33.
    E. Economou, Green’s Functions in Quantum Physics (Springer, Heidelberg, 1979) Google Scholar
  34. 34.
    I. Gohberg, M.G. Krein, Am. Math. Soc. Transl. Ser. 2 14, 217 (1960) Google Scholar
  35. 35.
    R.A. Hurd, E. Lüneburg, Can. J. Phys. 59, 1879 (1981) ADSCrossRefGoogle Scholar
  36. 36.
    V.G. Daniele, Radio Sci. 19, 1173 (1984) ADSCrossRefGoogle Scholar
  37. 37.
    R.S. Zich, V.G. Daniele, The Wiener-Hopf Method in Electromagnetics, Mario Boella Series on Electromagnetism in Information and Communication (The Institution of Engineering and Technology, SciTech Publishing, 2014) Google Scholar
  38. 38.
    B.L. Sharma, Sādhanā 42, 901 (2017) Google Scholar
  39. 39.
    B.L. Sharma, SIAM J. Appl. Math. 76, 1355 (2016) MathSciNetCrossRefGoogle Scholar
  40. 40.
    M. Cahay, M. McLennan, S. Datta, Phys. Rev. B 37, 10125 (1988) ADSCrossRefGoogle Scholar
  41. 41.
    L.I. Slepyan, Models and phenomena in fracture mechanics (Springer, New York, Berlin, Heidelberg, 2002) Google Scholar
  42. 42.
    B.L. Sharma, SIAM J. Appl. Math. 75, 1171 (2015) MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations