Advertisement

Breakdown of a topological transition in two-dimensional spin-ice due to geometry effects

  • Maria Victoria Ferreyra
  • Santiago A. GrigeraEmail author
Open Access
Regular Article
  • 125 Downloads

Abstract

We investigate the topological transition that takes place in spin-ice systems when a polarising field is applied along a principal axis. In particular, we analyse a two dimensional spin-ice model; we find that the topological transition is strongly affected by geometrical constraints in the shape of the sample, and that in the case where the dimension perpendicular to the field is much smaller than the longitudinal one, i.e. in the quasi-1D spin-ice-ladder limit, it splits into a series of first-order phase transitions characterised by sharp spikes in the specific heat and susceptibility.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    R. Moessner, Can. Phys. 79, 1283 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    C. Lacroix, P. Mendels, F. Mila, in Introduction to Frustrated Magnetism: Materials, Experiments, Theory (Springer Science & Business Media, 2001), Vol. 164 Google Scholar
  4. 4.
    C.L. Henley, Annu. Rev. Condens. Matter Phys. 1, 179 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    R. Moessner, J. Chalker, Phys. Rev. B 58, 12049 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    L.D.C. Jaubert, J.T. Chalker, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 100, 067207 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    L.D. Jaubert, Topological Constraints and Defects in Spin Ice, Ph.D. thesis, Ecole normale supérieure de Lyon, 2009 Google Scholar
  9. 9.
    P.W. Kasteleyn, J. Math. Phys. 4, 287 (1963) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Nagle, Proc. Natl. Acad. Sci. 70, 3443 (1973) ADSCrossRefGoogle Scholar
  11. 11.
    J.F. Nagle, C.S. Yokoi, S.M. Bhattacharjee, Phase Trans. 13, 236 (1989) Google Scholar
  12. 12.
    M. Baez, R. Borzi, J. Phys.: Condens. Matter 29, 055806 (2016) ADSGoogle Scholar
  13. 13.
    S. Grigera, C. Hooley, J. Phys. Commun. 2, 085004 (2018) CrossRefGoogle Scholar
  14. 14.
    K. Binder, J.-S. Wang, J. Stat. Phys. 55, 87 (1989) ADSCrossRefGoogle Scholar
  15. 15.
    S.M. Bhattacharjee, J.F. Nagle, D.A. Huse, M.E. Fisher, J. Stat. Phys. 32, 361 (1983) ADSCrossRefGoogle Scholar
  16. 16.
    F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    M.V. Ferreyra, G. Giordano, R.A. Borzi, J.J. Betouras, S.A. Grigera, Eur. Phys. J. B 89, 51 (2016) ADSCrossRefGoogle Scholar
  18. 18.
    C. Nisoli, R. Moessner, P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    A. Libál, C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. Lett. 97, 228302 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Han, Y. Shokef, A.M. Alsayed, P. Yunker, T.C. Lubensky, A.G. Yodh, Nature 456, 898 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    A. Ortiz-Ambriz, P. Tierno, Nat. Commun. 7, 10575 (2016) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Instituto de Física de Líquidos y Sistemas Biológicos, UNLP-CONICETLa PlataArgentina
  2. 2.SUPA, School of Physics and Astronomy, University of St Andrews, North HaughSt AndrewsUK

Personalised recommendations