Advertisement

Diffusion and microstructure in sodium silicate liquids

  • Pham Khac HungEmail author
  • Le The VinhEmail author
  • Nguyen Thi Thu Ha
  • Nguyen Van Hong
  • Fumiya Noritake
Regular Article
  • 29 Downloads

Abstract

We use molecular dynamics simulation to investigate the diffusion and microstructure of Na2O⋅3SiO2 and Na2O⋅4SiO2 liquid. It is shown that the temporal locations of Na are placed nearby O atoms. The O and Si atoms diffuse via the NBO ↔BO and SiO4 ↔SiO3 transformations. Meanwhile the diffusion of sodium is realized by mixed hopping-like and cooperative mechanism. Accordingly, Na atoms move from sites to other sites that are located nearby O atoms. Each NBO and BO has two and one sites, respectively. The Na atom prefers to move to NBO sites rather than to BO sites. Furthermore, Na atoms are collectively redistributed between different O atoms as the NBO ↔BO transformation happens. The diffusion pathways for sodium located in overlapped NFxBy cells contain large number of NF sites and small amount of BO sites. The dynamics of O atoms is analyzed through specified sets of most mobile and immobile atoms. The simulation showed that the dynamics of O atoms is heterogeneous. During moderately long time, the Si–O network consists of separate immobile domains where the local density of Na atoms is smaller than that in the rest of the network.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    Q. Zhao, M. Guerette, G. Scannell, L. Huang, J. Non-Cryst. Solids 358, 3418 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    B.O. Mysen, J.D. Frantz, Eur. J. Mineral. 5, 393 (1993) ADSCrossRefGoogle Scholar
  3. 3.
    T. Maehara, T. Yano, S. Shibata, M. Yamane, Philos. Mag. 84, 3085 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    J. Horbach, W. Kob, K. Binder, Chem. Geol. 174, 87 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    J. Du, L.R. Corrales, Phys. Rev. B 72, 092201 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    A. Pedone, G. Malavasi, A.N. Cormack, U. Segre, M.C. Menziani, Theor. Chem. Acc. 120, 557 (2008) CrossRefGoogle Scholar
  7. 7.
    S. Ispas, T. Charpentier, F. Mauri, D.R. Neuville, Solid State Sci. 12, 183 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    M. Bauchy, M. Micoulaut, Phys. Rev. B 83, 184118 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    B. Hehlen, D.R. Neuville, D. Kilymis, S. Ispas, J. Non-Cryst. Solids 469, 39 (2017) ADSCrossRefGoogle Scholar
  10. 10.
    F. Noritake, K. Kawamura, J. Non-Cryst. Solids 447, 141 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    B.O. Mysen, D. Virgo, F.A. Seifert, Rev. Geophys. 20, 353 (1982) ADSCrossRefGoogle Scholar
  12. 12.
    T. Furukawa, W.B. White, J. Chem. Phys. 95, 776 (1991) ADSCrossRefGoogle Scholar
  13. 13.
    T. Wu, S. He, Y. Liang, Q. Wang, J. Non-Cryst. Solids 411, 145 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    B.B. Karki, D. Bhattarai, L. Stixrude, Phys. Rev. B 76, 104205 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    S.K. Baggain, D.B. Ghosh, B.B. Karki, Phys. Chem. Miner. 42, 393 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    B.V.R. Tata, P.S. Mohanty, M.C. Valsakumar, Phys. Rev. Lett. 88, 018302 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    A.W. Cooper, P. Harrowell, H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    J.C. Mauro, K.D. Vargheese, A. Tandia, J. Chem. Phys. 132, 194501 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    O.N. Koroleva, V.N. Anfilogov, J. Non-Cryst. Solids 375, 62 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Wang et al., Nat. Commun. 5, 3241 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    H.W. Nesbitt, G.S. Henderson, G.M. Bancroft, R. Ho, J. Non-Cryst. Solids 409, 139 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    H. Jabraoui, E.M. Achhal, A. Hasnaoui, J.L. Garden, Y. Vaills, S. Ouaskit, J. Non-Cryst. Solids 448, 16 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    J.W.E. Drewitt et al., J. Phys. Condens. Mater. 27, 105103 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    P. Pfleiderer, J. Horbach, K. Binder, Chem. Geol. 229, 186 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    A. Winkler, J. Horbach, W. Kob, K. Binder, J. Chem. Phys. 120, 384 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    A. Meyer, F. Kargl, J. Horbach, Sci. Rev. 27, 35 (2012) Google Scholar
  27. 27.
    A. Meyer, J. Horbach, W. Kob, F. Kargl, H. Schober, Phys. Rev. Lett. 9, 027801 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    P. Jund, W. Kob, R. Jullien, Phys. Rev. B 64, 134303 (2001) ADSCrossRefGoogle Scholar
  29. 29.
    E. Sunyer, P. Jund, R. Jullien, Phys. Rev. B 65, 214203 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    H. Lammert, M. Kunow, A. Heuer, Phys. Rev. Lett. 90, 215901 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    J. Habasaki, Y. Hiwatari, Phys. Rev. B 69, 144207 (2004) ADSCrossRefGoogle Scholar
  32. 32.
    P.K. Hung, F. Noritake, N.V. Yen, L.T. San, J. Non-Cryst. Solids 452, 14 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    P.K. Hung, F. Noritake, L.T. San, To Ba Van, L.T. Vinh, Eur. Phys. J. B 90, 185 (2017) ADSCrossRefGoogle Scholar
  34. 34.
    F. Noritake, K. Kawamura, T. Yoshino, E. Takahashi, J. Non-Cryst. Solids 358, 3109 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    M. Fabian, P. Jovari, E. Svab, G. Meszaros, T. Proffen, E. Veress, J. Phys. Condens. Mater. 19, 335209 (2007) CrossRefGoogle Scholar
  36. 36.
    A.O. Davidenko, V.E. Sokolskii, A.S. Roik, I.A. Goncharov, Inorg. Mater. 50, 1375 (2014) CrossRefGoogle Scholar
  37. 37.
    N. Zotov, H. Keppler, Phys. Chem. Miner. 25, 259 (1998) ADSCrossRefGoogle Scholar
  38. 38.
    A.C. Wright, A.G. Clare, B. Bachra, R.N. Sinclair, A.C. Hannon, B. Vessal, Trans. Am. Crystallogr. Assoc. 27, 239 (1991) Google Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Simulation in Materials Science Research Group, Advanced Institute of Materials Science, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Electrical and Electronics Engineering, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Computational PhysicsHanoi University of Science and TechnologyHanoiVietnam
  4. 4.Graduate Faculty of Interdisciplinary Research, University of YamanashiYamanashiJapan
  5. 5.Computational Astrophysics LaboratoryRIKENSaitamaJapan

Personalised recommendations